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1 Introduction and main results
1.1 Introduction
This is an update of my reports of 2004 and 2009
 which relate vehicle crash rates to road surface characteristics using data from 1997 to 2002. We now have crash data for 1997 to 2009. The survey data is incomplete for 1997 and 1999 so I am limiting the analysis to the years 2000 to 2009.

As in the previous reports I am fitting a Poisson regression model to predict the crash rate from the road surface data, particularly curvature, skid resistance and roughness. But in this report, I am particularly concerned with the effect of roughness. However, since the approach is to fit the model of the earlier papers I also look at the effects of the other variables, particularly skid-resistance.
The approach is the same as that of the 2004 report except that I am omitting the preliminary analyses and include the out-of-context-curve effect described in the 2008 update
.
Most of this report is concerned with vehicle crashes in which at least one person is killed or suffers serious or minor injuries. I refer to these as casualty crashes or simply crashes. In section 7.5 I consider crashes in which at least one person is killed or suffers serious injuries. I call these serious/fatal crashes. In all cases crashes means reported crashes.
Currently, I do not have the complete 2009 crash data and the results here will need to be updated when the complete data is available.

The main results from this report are summarised in section 1.2 below.

Section 2 gives an overview of the data preparation and section 3 describes the data used in the analyses particularly by presenting histograms of the data.

Section 4 describes the Poisson model and section 5 gives the results of the model fit. Spreadsheets accompanying this report give the coefficients from the fitted models.
Section 6 carries out two “what-if” analyses to see the effect of changes in either skid resistance or roughness on the selected parts of the network in 2008.

Section 7 looks at a number of variations on the model including looking at additional variables and rerunning the model with only serious and fatal crashes.

Section 8 runs the model with the IRI variable replaced by IRI variance for various wavelengths and section 9 reruns the curve model
 with the updated data.

Finally the results are discussed in detail in section 10.
1.2 Main results

· The results are very similar to those from the previous studies with important predictors of crash rate including out-of-context-curve effect, curvature, ADT, skid resistance, roughness.
· There is still quite a high unexplained variability in the data.

· The effect of roughness depends on curvature, the effect being strongest on curves with radii of curvature in the range 500 to 5000 metres.

· Considering the IRI variances measurements, the IRI variance for wavelength 10 metre is a better predictor than the variances for wavelengths 3 or 30 but is only slightly better, if at all, than ordinary IRI.

· The skid resistance effect is stronger for crashes on wet roads rather than for all crashes and there is some evidence that it is stronger on curves than on straight or near straight roads.

· Where I have repeated the analyses using only serious/fatal crashes, I have found results very similar to those for all casualty crashes.

· Including a year × region interaction has little influence on the results.

· Rerunning the curve model of 2009 with the new data yields very similar results to the original 2009 analysis. These is some evidence for an effect of roughness for the curves with greater radii of curvature.

2 The data preparation
2.1 Overview
We have the following sets of data:
· Data collected by the SCRIM+ machine at 10 metre intervals on each side of the road
· Geometry: gradient; curvature; crossfall; GPS coordinates (2010 only)

· Scrim coefficient for each wheel path; skid_event

· Mean texture depth for each wheel path

· Data collected by the SCRIM+ machine at 20 metre intervals on each side of the road

· IRI roughness for left and right wheel paths; IRI variances (2006-9 only)

· Mean rut depth and standard deviation of rut depth and related measurements
· Carriageway data: urban/rural; number of lanes; lane width; estimated traffic ADT
· Road names: state highway number; road region

· Crash data:
· Crash location (two versions); crash details; movement code; etc

· Crash vehicle details

· Crash causes

· Survey number to year correspondence (also survey vehicle type)
We can think of the state-highway network being divided up into state-highways. These, in turn, are divided into roads. The roads have a unique name and unique identification number. The correspondence between the names and identification numbers is given in the road names table. Road names are important because they give us the order of the roads on a state-highway. The roads are divided into 10 metre segments for which we have the SCRIM+ data. The roads are also divided into longer segments for which we have the carriageway data. 

The data was initially loaded into a MySQL database for initial processing. This processing is described in section 2.2 below.

2.2 Initial processing
Initial processing was carried out using the MySQL database program.
Each line in each SCRIM+ table has a unique identity value and the following variables

survey_number; road_id; start_m; end_m; lane
which identify the segment of road being surveyed.

For the geometry, scrim and texture tables we usually have end_m – start_m = 10 and start_m is a multiple of 10. Initial processing consisted of using the survey number to year correspondence table to establish the survey_year of each survey, rounding start_m and end_m to be multiples of 10 and rejecting lines where the rounded values didn’t differ by exactly 10. Where there were duplicate measurements choose the one with the highest identity value.

For the roughness and rutting tables we usually have end_m – start_m = 20 and start_m is a multiple of 20. Initial processing consisted of using the survey number to year correspondence table to establish the survey_year of each survey, rounding start_m and end_m to be multiples of 10 and rejecting lines where the rounded values didn’t differ by exactly either 10 or 20 or where end_m – start_m < 6. Where there were duplicate measurements choose the one with the highest identity value.
Create a base set of 10 metre road segments. This consists of all values of survey_year, road_id and the rounded version of start_m that appear in any of the 10 metre SCRIM+ variables. Join with the road names table. We can sort by the road_name variable to ensure that the sections of road identified by each road_id are in consecutive order along each state highway.
Now join in the 10 metre data to this base set with separate columns for the left and right lanes – choose only the data with lane = L1 or R1.

The 2009-2010 survey data includes GPS locations. Find the locations of the beginning and end of each road as identified by the road_id.

Now considering the roughness and rutting data. Make table columns showing where, for each 10 metre segment in the base set, the corresponding roughness and rutting data values occur in the roughness and rutting tables. Where we have 20 metre roughness or rutting segments each value will typically be referenced twice in these columns. Where there are both 10 metre and 20 metre roughness or rutting segments that could correspond to a 10 metre segment in the base set, the 10 metre one is chosen preferentially. I don’t know whether this situation actually arises in this dataset. The actual combining of the roughness and rutting data into the rest of the data is done in the subsequent analysis carried out by the C++ programs.

Now considering the crash data. The crash vehicle type data for each crash and crash causes for each crash are each amalgamated into single fields and joined in to the crash table. The linking of the crashes to the 10 metre data is carried out by the C++ programs.

2.3 Final assembly of the data

The C++ programs set up the data structures needed for carrying out the analyses described in the rest of this report, read in the data generated by MySQL, carry out some checking and generate the transformed data where required. 

In particular, they link in the roughness, rutting, crash and road data and calculate the adjusted skid site, adjusted IRI, and the OOCC variables described in the section 3. They check for isolated missing values in the predictor variables and attempt to estimate these from neighbouring variables.
As noted in the previous section the state highways are divided into lengths of roads identified by their road_ids. It is important that any gaps between these lengths of roads be identified, since gaps will invalidate the averaging described in section 4.1 or the identification of the out of context curve effect described in section 3.8. The GPS data collected in the 2009-2010 as part of the geometry data is used to identify these gaps.
3 The Data
The following sections show histograms of the 10 metre data.
3.1 Year
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The histogram shows the number of ten metre segments surveyed each year. It is around 1 million and is increasing slightly as we go from 2000 to 2009. This could indicate an increase in the length of road surveyed or a reduction in the number of missing values. As noted in the introduction, I am limiting the analysis to the data from 2000 to 2009. 

3.2 Region

The state highway network is divided into 14 road regions. In the 2010 survey GPS locations of the roads were reported. This enables us to plot the locations of the road regions. North and South Islands are shown separately. Each graph shows the network in either the North or South Island with the roads corresponding to the region being graphed shown in red.
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The following histogram shows the number of 10 metre segments in each region. Since we are looking at 10 years most segments will be counted ten times.

[image: image4.emf] 0


 200000


 400000


 600000


 800000


 1e+006


 1.2e+006


 1.4e+006


 1.6e+006


?


R01


R02


R03


R04


R05


R06


R07


R08


R09


R10


R11


R12


R13


R14


histogram of road region




 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

? R01R02R03R04R05R06R07R08R09R10R11R12R13R14

histogram of road region


In the following graph the histogram has been weighted by the estimated traffic ADT.
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The Auckland and Wellington regions (2 and 9) are relatively larger in the weighted histogram compared with the unweighted and East Cape (5) smaller.

There is quite a lot of variability in the size of the road regions, whether or not they are weighted by the ADT. Nevertheless, they provide a convenient way of breaking the total network up into smaller regions. The differing sizes should not present a problem in the analyses.
3.3 Urban-rural

The roads are classified as urban or rural. Rural means a speed limit of more than 70 km an hour. So this is a very rough classification. I have included both rural and urban roads in the analysis but it possible that the analyses should have been limited to rural roads.
So, in this report urban means those parts of the state highway network where the speed limit is less than or equal to 70 km/hr. Hence the results don’t have a lot of relevance to urban roads, in general. 
The following histogram shows the most of the road length is rural.
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3.4 The crash data

The analyses were applied to each of 4 subsets of the crash dataset described in the following table.

	Group
	Criteria

	All
	All casualty crashes

	Wet
	All casualty crashes with the road wet field being W or the cause code was 801, 823 or 901.

	Selected
	All casualty crashes with MVMT_IDA being one of A, B, C, D, F

	Wet & selected
	Satisfying both the wet and selected criteria


where the MVMT_IDA codes are described in the following table.

	A
	Overtaking and Lane Change

	B
	Head On

	C
	Lost Control or Off Road (Straight Roads)

	D
	Cornering

	E
	Collision with obstruction

	F
	Rear End

	G
	Turning Versus Same Direction

	H
	Crossing (No Turns)

	J
	Crossing (Vehicle Turning)

	K
	Merging

	L
	Right Turn Against

	M
	Manoeuvring

	N
	Pedestrians Crossing Road

	P
	Pedestrians Other

	Q
	Miscellaneous


The definitions of the relevant cause codes for the wet crashes are
	Cause code
	Contributing factor

	801
	Rain

	823
	Flood waters, large puddles, ford

	901
	Heavy rain


Cause 823 is additional to the ones used in the 2004 study.
Here are the numbers of crashes by year for the sections of road used in the analyses.

	Year
	All crashes
	Wet crashes
	Selected crashes
	Wet selected crashes

	2000
	1800
	525
	1307
	421

	2001
	2023
	642
	1425
	506

	2002
	2274
	654
	1607
	505

	2003
	2391
	641
	1726
	518

	2004
	2379
	740
	1699
	596

	2005
	2463
	690
	1809
	569

	2006
	2619
	728
	1922
	587

	2007
	2801
	771
	2079
	631

	2008
	2554
	658
	1816
	525

	2009
	1566
	427 
	1126 
	349 

	Total
	22870
	6476
	16516
	5207


The numbers are low for 2009 because we don’t have complete data for this year.
Unlike the data for the 2004 study most of the crashes have been assigned locations and the number of crashes which could not be located is not an issue. In the 2004 study about ¾ of the crashes were located.

If we limit the crashes to those which resulted in fatalities or serious injuries the numbers for all crashes and wet crashes become 

	Year
	All crashes
	Wet crashes

	2000
	729
	201

	2001
	731
	209

	2002
	742
	202

	2003
	755
	177

	2004
	735
	219

	2005
	751
	201

	2006
	760
	197

	2007
	759
	182

	2008
	691
	154

	2009
	435 
	111 

	Total
	7088
	1853


3.5 Estimated traffic average daily travel

I am using the estimated average daily travel for 2009. This will not be a problem for the analyses provided that the travel has changed by the same relative amount for each road over the 10 years of the study. This is unlikely to be exactly true and ideally we should be using the estimate for each year.

I am omitting the roads for the analysis where the ADT is less than 100.

The following histograms are for the estimated average daily travel (ADT). The second one is for log10(ADT).
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The following two graphs show the histogram of traffic adt est weighted by traffic adt est and by the number of crashes.
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These show that the low ADT roads are still dominant even when you weight by ADT and even more so when you weight by crashes.
3.6 Curvature
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The histogram is of log10 absolute radius of curvature. Straighter roads are to the right hand side of the graph, sharp bends to the left hand side. By convention, straight roads are assigned a radius of curvature 100,000.
The following two graphs show the histogram of log10 absolute curvature weighted by traffic adt est and by the number of crashes.
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Weighting by traffic adt est doesn’t make a lot of difference to the general shape of the graph. However weighting by the number of crashes shows increased heights in the histogram corresponding to low radii of curvature.
3.7 The Advisory Speed calculation
Advisory speed is not used directly in the main models but is used in calculating the out of context curve (OOCC) effect.
This is the formula I used for calculating the Advisory Speed.

AS
=
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where 
AS
=
RGDAS Advisory Speed (km/h)


X
=
% Crossfall (sign relative to curvature)


H
=
Absolute Curvature (radians/km) = (1000m / R)

X and R were taken from the road geometry data collected by the SCRIM machine. If R < 0 then the sign of X was switched. Then the range of X was limited to 0 to 30.

The resulting value of AS was capped at 110 km/hr. In urban locations the cap for when calculating AS2 (but not AS1) defined in the next section, 3.8, was set at 70 km/hr.

Here is a graph of Advisory Speed versus curvature with crossfall set to zero.

[image: image15.emf] 10


 20


 30


 40


 50


 60


 70


 80


 90


 100


 110


 1


 10


 100


 1000


 10000


Advisory Speed


Curvature


Advisory Speed versus Curvature




 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1  10  100  1000  10000

Advisory Speed

Curvature

Advisory Speed versus Curvature


The curve is horizontal for radii of curvature less then 10 (in absolute value) because I have replaced all radii of curvature less than 10 by 10 in all the analyses.

3.8 Out-of-context-curve indicator (OOCC)

The out-of-context-curve indicator is intended to show to what an extent a curve is unexpected.  So if a curve is preceded by a section of straight road it will be assigned a high value of the out-of-context-curve indicator.
The out-of-context-curve indicator for a particular ten-metre road section is based in the advisory speed defined in section 3.7 above and is defined as follows: Take the average advisory speed, AS1, for the current and preceding two ten-metre sections and the average advisory speed, AS2, for the 50  ten-metre sections preceding the 3 used to calculate AS1. Then the OOCC indicator is zero if AS2 ≤ AS1 and

AS2 – AS1
if AS2 > AS1.

For the decreasing side of the road I do the same thing in the opposite direction.

This definition is not entirely satisfactory since the value does not die away quickly enough when one drives into a sequence of curves. So when we are fitting both the curvature effect and the OOCC effect, possibly some of the curvature effect is being fitted by the OOCC term.
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The following contour plot is a two-dimensional histogram of OOCC and log10(absolute curvature). The ranges of each variable were divided into 25 bins and a two dimensional histogram calculated. The results are fed to a contour plot program. The contours indicate the number of points per two-dimensional bin. So above the red line there are no points. Between the red and green lines there are 1 to 9 points per bin. Between the green and blue lines there are 10 to 99 points per bin and so on.  
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3.9 SCRIM coefficient

The SCRIM coefficient is the measure of skid resistance.
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The following is a two-dimensional histogram of SCRIM and log10(absolute curvature). See section 3.8 for a description of two dimensional histograms.
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Unlike the corresponding graph for IRI in section 3.10 below there is only a slight, if any, relationship between curvature and SCRIM.

3.10 IRI (roughness)

IRI is the measure of roughness. The histogram is of values of log10(IRI). 
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The following is a two-dimensional histogram of log10(IRI) and log10(absolute curvature). See section 3.8 for a description of two dimensional histograms.
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This histogram shows a slight curling up on the left hand side. Highly curved roads tend to have higher roughness. This is, at least partly, a measurement effect. I considered it advisable to try to reduce this effect and this is described in section 3.11 below.

3.11 Adjusted IRI

I carried out a regression analysis, predicting log10(IRI) with a fifth degree polynomial of log10(absolute curvature) and second degree polynomial of gradient. The predicted values are shown in the graphs below.
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We can use the regression to adjust the IRI value to remove the effect of curvature and gradient. The adjustment has been set so that there is no adjustment for curvature = 10,000 and gradient = 0. The adjustment reduces the IRI by a factor of about 2 when the curvature is 10 and the gradient 0 or by a factor of about 1.2 when the curvature is 10,000 and the gradient is 10.
For the regression coefficients and details of the adjustment calculation see the worksheet “Adj IRI” in the spreadsheet “fitted_all.xls”.

Here is the histogram of the adjusted log10(IRI) and the two dimensional histogram of the adjusted log10(IRI) and log10(absolute curvature).
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The curling up on the left hand side in the corresponding histogram for log10(IRI) has now disappeared.

3.12 Gradient
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A positive gradient means uphill, negative means downhill. Most values are between -10 and 10 but there are more extreme values in both directions.
3.13 Skid-site and adjusted skid-site categories

Skid-site values are given for each 10 metre segment. Here are the definitions
	skid-site
	Description

	4
	Normal roads (event free)

	3
	Approaches to road junctions, down gradient 5-10%, motorway junction area

	2
	Urban curve < 250m radius, rural curve < 400m radius, down gradient > 10%, on ramps with ramp metering

	1
	Railway level crossings, traffic signals, pedestrian crossings, stop and give way signs, roundabout approaches

	5
	Divided carriageway (event free)


We are not considering divided roads in this study so skid-site 5 is not relevant. We want curvature and gradient to be handled by the curvature and gradient predictors rather than skid-site and hence we need to define an adjusted skid-site variable.
	adjustedskid-site
	Description

	4
	Normal roads (event free)

	3
	Approaches to road junctions

	2
	Not used

	1
	Railway level crossings, traffic signals, pedestrian crossings, stop and give way signs, roundabout approaches

	Missing
	Divided carriageway


Event-codes are reported for each 10 metre segment and these enable us to calculate the adjusted skid-site value according to the following rules:
· 4 is the default

· missing if event code L (divided road) appears anywhere

· 1 for event codes A-F or 1

· 3 for event codes J, M or O

The skid-site effect calculated by the model is going to be very rough since there is likely to be considerable variation in the hazard at different skid-site locations.
3.14 Lane width

The carriage way table includes a lane width variable. This appears to be incomplete and I have not used it in the analyses.
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It may be possible to pick up the surface width from the surface data table, but this is not something I have investigated yet.

3.15 Rut mean and rut standard deviation
These weren’t significant in the earlier analysis and I haven’t included them in the main analysis. Rut mean depth is included in a separate analysis.
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3.16 Crossfall

It was fairly marginal whether crossfall had a significant effect and it is not included in the analyses in this report. However the effect is likely to be very complicated in its interaction with curvature so it probably should not be completely ruled out at this stage.
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3.17 Texture depth
This wasn’t significant in the earlier analysis and I haven’t included it in the main analysis. It is investigated briefly in a supplementary analysis. See section 7.2.
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There is a problem with including texture depth in the analysis. Asphaltic concrete surfaces, as opposed to chip-seal, tend to be used in more populated areas. Roads with asphaltic concrete surfaces tend to have a lower texture, but being in more populated areas, may have a higher crash risk. Hence, there is the possibility of a spurious correlation. By fitting both the urban-rural effect and the skid site categories in the model one can reduce this spurious correlation, but one really needs to include the surface type as a predictor variable. The information is available but it is outside the scope of the present study to include it.
4 The Poisson regression model

4.1 The model
I suppose each side of each 10-metre length of road can generate crashes at the rate (per year)
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where 
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 is the ADT (per side) and 
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 is a linear combination of the road characteristics being transformations of terms including
· a constant,

· gradient,

· curvature,
· out of context curve effect,
· skid-site classification,

· skid resistance,

· log(ADT),

· year,

· region,

· urban/rural classification.

The coefficients in the linear combination are the unknown parameters to be estimated.

The spreadsheets distributed with this report show how to calculate of the crash risk from the fitted model. See section 5.4 for more details.
Since we are taking the exponential of 
[image: image35.wmf]L

, a linear combination of the road characteristics, the actual model is multiplicative.

Note that the average daily traffic (ADT) appears in the model in two places, 
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 in equation (1) and as a component of 
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. These could have been combined into a single term in 
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. However, by using the formulation in (1) the component in 
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 is present only if the crash risk (expected number of crashes per 100 million vehicle kilometres) depends on ADT. When there is dependence, this dependence is modelled by the size of the coefficient of log(ADT) in 
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. The crash risk is given by
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The actual rate that crashes are reported in a 10 metre length of road is the average of generating rates over the 10 metre lengths in its immediate neighbourhood (on the same road) and summed over the two sides of the road. In the results reported here the average is over 10 metre lengths within 100 metres of the length being considered. Typically, this gives an average over 210 metres on each side of the road. There is no weighting down of the more distant 10 metre lengths. This averaging allows for error in reporting the location and the possibility that a crash ends at a location some distance from the piece of road involved in generating the crash.

Because we are combining the sides of the road we don’t have to know the directions of vehicles involved in the crash.

The model assumes that the crashes are statistically independent and the number in each 10-metre segment follows a Poisson distribution. (Of course, for most segments the number will be zero).

Fitting is by maximum likelihood and uses my C++ libraries for matrix manipulation and automatic differentiation from http://www.robertnz.net and my prototype array and statistical modelling package currently under development. I am writing a description of the modelling package at http://www.robertnz.net/cpp_stats.htm.
4.2 Error estimates
The error estimates and significance tests produced by the model are based on the assumption that the values of the dependent variable, the number of crashes in each ten metre segment each year, are distributed as independent Poisson variables. It was clear in the 2004 study, and the same is the case here, that this assumption is not correct.
The usual trick in this situation is to use the residual deviance calculated as part of the maximum likelihood estimation to provide a correction to the error estimates. This does not work in the present analysis because the average number of crashes per segment is very small – much less than 1.

The analysis in section 5.5 suggests error estimates should be increased by around a factor of around 2.3. This corresponds to increasing the critical points for the tests in the analysis of variance tables by a factor of around 5.4.
The increased error is probably due, an least partially, to an unknown factor that affects a length of road in the same way. One possible suspect is that the ADT estimate is subject to sufficient error to cause a problem.
If this is the case, the errors of corresponding to variables that vary slowly along a road such as SCRIM or IRI are likely to be subject to the increased error, but variables that change rapidly such as curvature, and their interactions with other variables will be less affected. A more advanced analysis could attempt to allow for this extra variability. For example, it could include a random effect or apply a statistical technique known as The Jack-Knife.
5 The model fit
5.1 The regression analysis
I have carried out the regression analysis using the four categories of crash data described in section 3.4. The analysis is essentially the same as the simplified one given in the 2004 report with the polynomial transforms of the variables. I am using the adjusted skid site categories as described in section 3.13 and the out-of-context-curve variable described in section 3.8. I am also including and interaction term between curvature and the adjusted IRI value. Road region with 14 levels replaces the region variable with 7 levels used in the 2004 report.

The following table shows details of the predictor variables

	Predictor variable
	Bounds
	Notes

	year
	
	discrete variable, 10 levels

	region
	
	discrete variable, 14 levels

	urban_rural 
	
	discrete variable, 2 levels

	adj_skid_site 
	
	discrete variable, 3 levels

	poly3_bound_OOCC 
	0, 35
	3rd degree polynomial of bounded version of OOCC

	poly2_bound_log10_abs_curvature 
	2,4
	2nd degree polynomial of bounded version of log of absolute curvature

	poly2_log10_ADT 
	
	2nd degree polynomial of ADT

	poly2_scrim-0.5000 
	
	2nd degree polynomial of (scrim – 0.5)

	poly3_bound_abs_gradient 
	4,10
	3rd degree polynomial of bounded version of absolute curvature

	poly3_bound_adj_log10_iri 
	-0.3, 1.2
	3rd degree polynomial of bounded version of adjusted log IRI

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri 
	as above
	interaction between 2nd degree polynomial of bounded version of absolute curvature and 2nd degree polynomial of bounded version of adjusted log IRI 


By and large I am using the same transformations as in simplified model in the 2004 report. The OOCC variable is new and the bounds on the adjusted log IRI variable have been changed. The inclusion of the interaction term between log absolute curvature and adjusted log IRI is new. This allows for a different sized effect for different curvatures.
I present the analysis of variance tables and predicted value graphs in this report. The estimates of effects are in the spreadsheets distributed with this report.
5.2 Analysis of variance tables
The analysis of variance tables show two versions of the chi-squared values.

The type III value is the version that seems often favoured by SAS users – each variable is tested in the presence of all other variables. This can be misleading if two variables are highly correlated since both can appear non-significant when tested in the presence of the other. This version does not make sense when you test a main effect when that effect is also part of an interaction term (curvature and IRI in our analyses). The type I version is when each variable is tested only in the presence of the variables above it in the table. This version tends to be favoured by S-plus and R users. One tries to arrange the order of variables so that the most important variables come first with interactions coming after main effects, but even then, apparent significance can be misleading when variables are highly correlated (as is the case with OOCC and curvature in our analyses). So I like to give both tables.

In the 2004 study the standard errors given by the Poisson model seemed to be underestimated by a factor of around 2. The same seems to be true here. This means that the 1% points given in the tables should be increased by a factor of 4, especially those that vary only slowly as we proceed along a road. See sections 4.2 and 5.5 for more details. In fact, 5.4 seems to be a better figure. However for curvature and interactions with curvature the correction is probably rather less. 
5.2.1 All casualty crashes

	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	519
	526.35

	region
	13
	27.7
	298.88
	665.07

	urban_rural 
	1 
	6.63
	27.811 
	485.58

	adj_skid_site 
	2 
	9.21
	4693.3 
	6288.5

	poly3_bound_OOCC 
	3 
	11.3
	454.48 
	5399.5

	poly2_bound_log10_abs_curvature 
	2 
	9.21
	110.88 
	459.57

	poly2_log10_ADT 
	2 
	9.21
	576.57 
	518.17

	poly2_scrim-0.5000 
	2 
	9.21
	221.65 
	265.24

	poly3_bound_abs_gradient 
	3 
	11.3
	46.334 
	65.975

	poly3_bound_adj_log10_iri 
	3 
	11.3
	83.129 
	108.94

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri 
	4 
	13.3
	107.14 
	107.14


With the exception of urban_rural (in the type III table) all variables are statistically significant although gradient is fairly marginal. 
5.2.2 Wet casualty crashes 
	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	194.1
	134.7

	region
	13
	27.7
	221.21
	485.06

	urban_rural
	1
	6.63
	38.927
	8.1259

	adj_skid_site
	2
	9.21
	684.88
	1005.1

	poly3_bound_OOCC
	3
	11.3
	246.9
	4211.5

	poly2_bound_log10_abs_curvature
	2
	9.21
	77.204
	428

	poly2_log10_ADT
	2
	9.21
	141.1
	104.84

	poly2_scrim-0.5000
	2
	9.21
	389.38
	436.88

	poly3_bound_abs_gradient
	3
	11.3
	68.251
	83.437

	poly3_bound_adj_log10_iri
	3
	11.3
	32.167
	39.785

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	42.743
	42.743


The chi-squared value of the scrim variable has increased showing the importance of skid resistance for wet roads, otherwise the chi-squared values have mostly decreased as you would expect with the smaller number of crashes. The iri and curvature × iri terms are not significant when we use the 1% point multiplied by 5.4. 
5.2.3 Selected casualty crashes

	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	430.4
	417.6

	region
	13
	27.7
	207.98
	607.61

	urban_rural
	1
	6.63
	98.652
	265.56

	adj_skid_site
	2
	9.21
	465.85
	971.36

	poly3_bound_OOCC
	3
	11.3
	382.23
	7057.3

	poly2_bound_log10_abs_curvature
	2
	9.21
	146.39
	711.96

	poly2_log10_ADT
	2
	9.21
	710.14
	600.84

	poly2_scrim-0.5000
	2
	9.21
	285.08
	304.36

	poly3_bound_abs_gradient
	3
	11.3
	41.345
	53.905

	poly3_bound_adj_log10_iri
	3
	11.3
	34.04
	57.841

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	59.927
	59.927


The chi-squared values are similar to those for all casualty crashes. The iri and curvature × iri terms are marginal when we use the increased value of the 1% point. The urban_rural variable is now significant in the type III version of the chi-squared value. I interpret this to mean that when we remove the types of crashes that tend to be associated with urban areas the increased safety due to the lower speed limit becomes apparent.
5.2.4 Wet selected casualty crashes

	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	166.94
	114.38

	region
	13
	27.7
	170.96
	464.49

	urban_rural
	1
	6.63
	75.633
	251.1

	adj_skid_site
	2
	9.21
	80.89
	196.44

	poly3_bound_OOCC
	3
	11.3
	194.9
	4606.2

	poly2_bound_log10_abs_curvature
	2
	9.21
	87.782
	570.04

	poly2_log10_ADT
	2
	9.21
	181.86
	138.04

	poly2_scrim-0.5000
	2
	9.21
	429.95
	462.8

	poly3_bound_abs_gradient
	3
	11.3
	58.002
	69.765

	poly3_bound_adj_log10_iri
	3
	11.3
	17.233
	23.964

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	32.325
	32.325


The chi-squared values are similar to those for the wet casualty crashes. The scrim value has increased slightly, the others have generally decreased slightly, the adjusted skid-site affect seems a lot smaller.
5.3 Predicted crash rate graphs
In order to see how each variable in the model affects crash rate I have graphed the crash rate predicted by the model as each variable, in turn is varied. For the terms not being varied I have used the following values:
	year
	2008

	region
	R03

	urban_rural
	R

	adj_skid_site
	4

	OOCC
	0

	curvature
	5000

	ADT
	1000

	gradient
	0

	scrim
	0.5

	adj_log10_iri
	0.3


Crash rates are in crashes per 100 million vehicle kilometres. The error bounds show 2 standard deviations (roughly 95% confidence) and are based on the Poisson model – so lengths should be doubled. However they are for the overall crash rate and there is some error that is common to all the points on a graph. So when we look at differences the error may be less that is suggested by the graph (after we have doubled the length). 
I show all the graphs for the all casualty crashes but only a selection for the others. (All casualty means all reported crashes which involve at least one fatal, serious or minor injury).
For the wet casualty crashes and wet selected casualty crashes we don’t know the fraction of time the road is wet and are normalising by the total traffic, not the traffic when the road is wet. Hence the calculated crash rates are much less than for all casualty crashes and selected casualty crashes.

In all the crash rate graphs the vertical scale is logarithmic and there is a ratio of 40 between the crash rate at the lower end and the upper end. 
5.3.1 All casualty crashes - year
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The downturn in 2008 is possibly due to the recession. The drop in 2009 is because not all the data is in yet and does not represent a real effect.

5.3.2 All casualty crashes - region
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This shows some regional variation. This could be a real effect or it might be due to different reporting rates.
5.3.3 All casualty crashes – urban/rural
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This shows very little difference between urban and rural. Possibly the decreased risk due to a lower speed limit in urban areas is balanced by additional causes of crashes.

5.3.4 All casualty crashes – adjusted skid-site
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The crash rate for adjusted skid-site 4 is substantially lower than for adjusted skid-site 1 or 3. There needs to be some care in interpreting the actual rates for skid-sites 1 and 3 since these are essentially point events and we are looking at crash rates per kilometre.

5.3.5 All casualty crashes – OOCC  
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This shows the increasing crash rate as the OOCC (out of context curve) effect increases. Since we have lumped together values where OOCC is greater than or equal to 35 we have a horizontal line for these values.
5.3.6 All casualty crashes – curvature
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This shows the decreasing crash rate as the absolute radius of curvature increases (road becomes straighter). Since we have lumped together values where absolute curvature is less than or equal to 100 or greater than or equal to 10000 we have horizontal lines for these values.

5.3.7 All casualty crashes – OOCC and curvature
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Because OOCC and curvature are closely related, I have drawn a contour plot to show what happens when both are varied. I have omitted the values where a combination doesn’t make sense – you can’t have high radius of curvature and high OOCC. The contours show log10 crash rate so 1.2 corresponds to a crash rate of 15.8 and 1.8 to a crash rate of 63.
5.3.8 All casualty crashes – ADT
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This shows the crash rate dropping as ADT increases. Even after allowing for sharper bends, lower SCRIM, increased roughness that you might expect on lesser used roads, these roads are still more dangerous than the high ADT roads.
One could hypothesise that the effect is due to more risky driving, less policing, less signage and numerous other factors that are not included in the model and that are associated with lower ADT roads. 
5.3.9 All casualty crashes – scrim
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This shows the crash rate decreasing as scrim increases. I am fitting a quadratic curve although not much curvature is apparent. There isn’t much data towards the extreme values of scrim values so this graph shouldn’t be taken too seriously at the ends.

5.3.10 All casualty crashes – gradient 
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This shows the crash rate increasing slightly as absolute gradient increases. Because we don’t know the direction of travel of vehicles involved in crashes we can’t distinguish between uphill and downhill gradient. So, assuming uphill decreases risk and downhill increases it, the effects may cancel and we might not expect a big effect. Values less than or equal to 4 are lumped together so we get a horizontal line for these points.
5.3.11 All casualty crashes – adjusted iri 
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This shows crash risk increasing as the adjusted iri increases.

Because we are fitting and interaction between curvature and adjusted iri one needs to look at both effects together. The following graph shows a contour plot as both of these are varied.
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It is easier to understand the relationship if instead we graph the crash rate against the adjusted iri for a selection of values of curvature.
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The graph is for radii of curvature 10,000, 3,000, 1,000, 300, and 100 all with OOCC = 0. This graph takes the adjusted log10 iri from -0.3 rather than 0 as in the first graph in this section. There is very little data with adjusted log10 iri less than 0 so the increasing values here are possibly a quirk of the polynomial fit.

This graph suggests that

· for straight or near straight roads roughness is not very relevant.
· for modestly curved roads roughness increases crash risk – the contour plot suggests a range of radii of curvature of 500 – 5000 metres for roughness causing increased crash risk.
· for very curved roads roughness is associated with decreased crash risk – but one should be very wary about interpreting this result.
· possibly, very low roughness may be associated with an increase in crash risk (possibly low roughness encourages drivers to go faster or possibly low roughness is associated with other hazards – for example, bridge decks).
5.3.12 All casualty crashes – adjusted iri with tps interaction

I want to see whether the modelling of the effect of curvature and adjusted iri was being constrained by the use of polynomial functions. So I have replaced the curvature and adjusted iri terms by a thin plate spline (tps) function of these two terms. A thin plate spline is like a higher dimensional analogy to the one dimensional spline used for fitting curves. I have used a thin plate spline based on a 5 × 5 array of knots covering the range of log10 curvature from 2 to 4 and adjusted log10 iri from -0.3 to 1.2. This gives 24 degrees of freedom for the combined log10 curvature and adjusted log10 iri term as opposed to the 9 assigned to log10 curvature and adjusted log10 iri and their interaction in section 5.3.11. So there is a lot more flexibility at the expense of a lot more random error. Here is the crash risk versus adjusted iri plot.
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Most of the adjusted log10 iri data is between 0 and 0.8 (adjusted iri between 1 and 6.3). In this range the results are similar to those using the polynomial functions.
There is a suggestion that above this range there is increased risk in near straight roads. Other analyses do not support this and it seems likely that this is not a real effect.
5.3.13 Wet casualty crashes – region
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This is similar to the corresponding plot for all crashes in section 5.3.2. The confidence intervals are longer reflecting the smaller number of crashes. The value for the South Island West Coast in R12 is somewhat higher, presumably because of the higher rainfall in the West Coast.

5.3.14 Wet casualty crashes – OOCC
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This is roughly similar to the corresponding graph for all casualty crashes.
5.3.15 Wet casualty crashes – curvature
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The effect is larger when compared with all casualty crashes.

5.3.16 Wet casualty crashes – scrim
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The effect is larger when compared with all casualty crashes.
5.3.17 Wet casualty crashes – adjusted iri 
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The effect seems a little bigger when compared with the all casualty crashes.
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The effects in the graph for different curvature values are similar to that for all casualty crashes except the effects seem a little larger. However with the effects only marginally statistically significant one shouldn’t read too much into this graph.

5.3.18 Selected casualty crashes – urban/rural
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This shows urban slightly lower than rural – possibly because of lower speed limits, but there might be other factors such as better roads and better policing.

5.3.19 Selected casualty crashes – adjusted skid-site
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The shows a smaller effect than for all casualty crashes – presumably because some types of intersection crashes are excluded by the selection criteria.

5.3.20 Selected casualty crashes – scrim
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The shows a larger effect than for all casualty crashes – presumably because some types of non-skid related crashes are excluded by the selection criteria.

5.3.21 Selected casualty crashes – adjusted iri
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The plot is similar to that for all casualty crashes as are the following two graphs showing the interaction with curvature.
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5.3.22 Selected casualty crashes – adjusted iri with tps interaction

I have repeated the analysis with the 5×5 this plate spline and again the results are similar to those for all casualty crashes.
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5.3.23 Wet selected casualty crashes - scrim
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The effect is similar to that for the wet casualty crashes.

5.3.24 Wet selected casualty crashes – adjusted iri
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The graphs are similar to those for the wet casualty crashes.

5.4 The coefficients and calculation of predicted crash rates 
The coefficients from the regression are in the worksheet Coeff in the spreadsheets fitted_all.xls, fitted_wet.xls, fitted_sel_xls and fitted_wet_sel.xls distributed with this report.
The spreadsheets demonstrate how the predicted crash rates are calculated. There are comments in the spreadsheets explaining the calculations. 
The road data is entered into the yellow region in the worksheet “Values”. If an invalid value is entered into cells C9 to C12 the word “Error” will appear in column D. Remember that if you enter the year 2009 you will get low results because we have only partial data for 2009. The value in cell C25 should be ‘y’ unless you don’t want to adjust the IRI value – for example if the adjusted IRI value has been entered into cell C18. The column “default” shows the default values used in my graphs.
The adjustment to the IRI is carried out in worksheet “Adj IRI” and the results reported in rows 23 and 24 in worksheet “Values”. Cell C23 shows the amount to be subtracted from the log10(IRI) and C24 shows what IRI would be multiplied by.
Lines 29 to 40 in worksheet “Values” calculate the transformed and bounded values of the predictor variables.

The actual calculation of the predicted crash rate is carried out in worksheet “Calculation”.
The result is reported in B42 on the “Values” sheet.

5.5 Comparison of fitted and observed counts

This is an attempt to see how well the model fits.

The highway network was divided into segments by partitioning by carriageway area and state highway number. (The network is divided into 24 carriageway areas). That is two sections of road are in the same partition if they are in the same carriageway area and on the same state highway. This gave 148 partitions. Then the model was used to predict the number of crashes in each of these. The observed numbers were compared with the predicted number. The first graph shows the comparison for all crashes and the second graph shows the normalised residual
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If the model was fitting perfectly there would be few points outside the range –2 to 2. The actual range of points is more like –4 to 4 with a few outside this range (particularly to the left of the graph). So the model doesn’t fit perfectly.

Here are the corresponding graphs for the wet road crashes.
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The quality of the fit is about the same as for all crashes as it is for selected crashes below.
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One could identify the particular points where the fit is bad and see if there was a data problem or where there were special risk factors. There is one point that possibly stands out as being low in the wet and selected graphs and, to a lesser extent in the all crashes graph. This corresponds to highway 25 in the East Waikato carriageway area. I haven’t investigated the possible reasons for this low value.
The following table shows the numbers of crashes in each of the 3 categories of crashes I have just considered and the sum of squares of the normalised residuals. If nothing had been fitted and the Poisson model was true these would have chi-squared distributions with 148 (the number of categories) degrees of freedom. So the values would be close to 148. Because we have fitted parameters the number of degrees of freedom must be reduced. We have fitted 45 parameters (including the constant) but it would be wrong to reduce the number by 45 since there has been a lot of amalgamation of data. Choose 23 as a ball-park figure. So we have 125 degrees of freedom. So in the case of all crashes we have a value that is too large by a factor of 5.4. This is where my suggested adjustment to the significance tests comes from.
	
	All crashes
	Wet crashes
	Selected crashes

	Number of crashes
	22870
	6476
	16516

	Chi-squared value
	675
	624
	693


It is a little surprising that the chi-squared values remains high for the wet-crashes. We have a lot less crashes so we would expect the randomness in the crashes to begin to mask whatever is causing the lack of fit.
The situation changes very little when we include a year × region interaction, see section 7.4. So problem is probably not one of fluctuation of weather patterns in different regions.

One possibility is that traffic patterns over a day and over a year are rather different from rainfall patterns over a day or year and this might introduce additional variation into the wet crash data.
5.6 Effect of the averaging
The model fitted in section 5 averages the prediction from the log Poisson model over 21 adjacent 10 metre segments, that is the segments within a range of 10 segments of  the one in which we are actually making the estimate. This section investigates the effect of altering the number of segments being averaged. The following table shows the log-likelihood and the type I chi-squared values for the all crashes model for various values of averaging length. I have shown the maximum values in each line in bold. 
	Effect
	Averaging length (metres)

	
	410
	210
	110
	50
	30

	Log likelihood
	-152161
	-151293
	-150680
	-150803
	-150917

	year
	528
	526
	525
	521
	519

	region
	678
	665
	655
	657
	657

	urban rural
	383
	486
	552
	546
	523

	adjusted skid-site
	4318
	6289
	  7319
	6541
	6053

	OOCC
	5871
	5400
	4419
	3401
	3108

	curvature
	263
	460
	752
	1125
	1228

	ADT
	 430
	518
	590
	632
	640

	scrim
	250
	265
	237
	249
	256

	gradient
	62
	66
	  69
	64
	62

	adjusted IRI
	40
	109
	160
	277
	275

	curvature × adj IRI
	85
	107
	102
	117
	120


The analyses in the report use an averaging length of 210. If we just look at log-likelihood, then we might decide that an averaging length of 110 in more appropriate. The different chi-squared values don’t show any consistent pattern and it is hard to make much sense of them.
6 Application of the model

6.1 What-if study for skid resistance
This is an illustration of the use of the model for seeing the effect of improving skid resistance.
Consider increasing the skid resistance of the sections of road classified as skid-site 2 (curve with less than 250m radius or gradient greater than 10%; investigatory SCRIM level 0.5). Choose one of the following minimum levels for scrim: 0.4, 0.5, 0.6. If the actual scrim value is below this the road surface is upgraded to raise the scrim value to this amount; otherwise it is left the same. We can choose to do this for all the roads that fall short of the minimum scrim level or only those with ADT above some prescribed level. 

Our what-if study is for 2008. The following table shows the actual road and crash data for 2008 for the road segments classified as skid-site 2.

	Length of road sides
	2056

	Number of crashes
	567

	Number of wet crashes
	207


The next table shows the reduction in the predicted number of crashes 2008 if the upgrade had been done before 2008.

	
	
	
	All crashes
	Wet crashes

	minimum 

scrim
	fix for 

ADT(
	fix 

length
	predicted 

crashes
	saved 

crashes
	predicted 

crashes
	saved 

crashes

	0
	0
	0
	565
	0
	219
	0

	0.4
	0
	440
	547
	18
	194
	24

	0.5
	0
	1292
	506
	59
	159
	60

	0.6
	0
	1911
	452
	113
	124
	95

	0.4
	1000
	350
	548
	17
	195
	23

	0.5
	1000
	955
	509
	56
	162
	57

	0.6
	1000
	1336
	460
	105
	130
	88

	0.4
	5000
	69
	558
	7
	210
	9

	0.5
	5000
	179
	541
	24
	196
	22

	0.6
	5000
	228
	521
	44
	184
	35


The first line is for no upgrade, the rest are for the values of minimum scrim value and ADT shown in the first two columns. It is supposed that the two sides of the road are handled independently and the column fix length shows the length of side that needs to be upgraded. The analysis is carried using the model for all crashes and the model for all wet crashes. The table shows the predicted number of crashes for each model and then the reduction in the number of crashes compared with the first line.

The table suggests one should consider raising minimum scrim to 0.6 on skid-site 2 roads with ADT ( 1000.
The numbers of saved crashes are a lot higher than in the 2004 study, when I looked at saved crashes for 2001. There are several reasons for this. I am classifying more crashes as wet than in the 2004 study and most crashes have been located as opposed to about 75% in the 2004 study. However, the main reason seems to be that much more road needs fixing in 2008 than in 2001 (or has there been a change in the calibration of the SCRIM readings).
This example should be regarded as somewhat tentative and I have not tried to estimate accuracy.
6.2 What-if study for IRI
This is an illustration of the use of the model for seeing the effect of reducing roughness.
Consider decreasing roughness on roads with absolute radius of curvature greater than 500 and less than 5000 metre. Choose one of the following maximum levels for IRI: 2.00, 3.98, 7.94. If the actual IRI value is above this the road surface is upgraded to lower the IRI value to this amount; otherwise it is left the same. We can choose to do this for all the roads that are above the maximum IRI level or only those with ADT above some prescribed level. 

Our what-if study is for 2008. The following table shows the actual road and crash data for 2008 for the road segments in the curvature range 500 to 5000 metre.

	Length of road sides
	7348

	Number of crashes
	1229


The next table shows the reduction in the predicted number of crashes 2008 if the upgrade had been done before 2008. The table is using adjusted IRI, but for this curvature range the adjustment has little effect.
	maximum 

adjusted IRI
	fix for 

ADT(
	fix 

length
	predicted 

crashes
	saved 

crashes

	
	0
	0
	1182
	0

	7.94
	0
	30
	1180
	2

	3.98
	0
	815
	1148
	33

	2.00
	0
	4212
	1048
	134

	7.94
	1000
	20
	1180
	1

	3.98
	1000
	602
	1150
	31

	2.00
	1000
	3242
	1055
	126

	7.94
	5000
	5
	1181
	1

	3.98
	5000
	169
	1163
	19

	2.00
	5000
	953
	1106
	76


The first line is for no upgrade, the rest are for the values of maximum adjusted IRI value and ADT shown in the first two columns. It is supposed that the two sides of the road are handled independently and the column fix length shows the length of side that needs to be upgraded. The analysis is carried using the model for all crashes. The table shows the predicted number of crashes for each model and then the reduction in the number of crashes compared with the first line.
Again this example should be regarded as somewhat tentative and I have not tried to estimate accuracy.
7 Variations on model

The following sections explore a number of minor variations of the model of section 5.

7.1 Include curvature × SCRIM interaction
In this section I look for an interaction between curvature and SCRIM. That is, does the effect of SCRIM change according to curvature. In the 2004 study, I did not find any effect. I this report I am fitting a very simple log10(curvature) × scrim interaction for both the all-crash data and the wet-crash data. In both cases, it is fairly marginal whether the results are statistically significant. I have given the analysis of variance tables with the last line corresponding to the interaction term. I expect the amount we need to inflate the significance levels to be rather less the 5.4 suggested in section 4.2 since curvature is a rapidly changing predictor variable. So, probably, we should regard the effect as statistically significant. Both graphs of the effect of SCRIM on crash rate at various curvatures suggest that the effect of SCRIM is higher on curves rather than on straight or near straight roads.
7.1.1 All crashes

	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	514.67
	533.09

	region
	13
	27.7
	301.76
	673.14

	urban_rural
	1
	6.63
	27.538
	493.38

	adj_skid_site
	2
	9.21
	4693.1
	6298.4

	poly3_bound_OOCC
	3
	11.3
	455.22
	5494.1

	poly2_bound_log10_abs_curvature
	2
	9.21
	107.4
	470.42

	poly2_log10_ADT
	2
	9.21
	575.29
	519.67

	poly2_scrim-0.5000
	2
	9.21
	61.688
	262.21

	poly3_bound_abs_gradient
	3
	11.3
	49.306
	66.255

	poly3_bound_adj_log10_iri
	3
	11.3
	82.228
	109.61

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	110.42
	106.86

	bound_log10_abs_curvature × scrim-0.5000
	1
	6.63
	22.107
	22.107
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7.1.2 Wet crashes
	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	191.62
	138.25

	region
	13
	27.7
	228.46
	508.26

	urban_rural
	1
	6.63
	39.01
	6.7804

	adj_skid_site
	2
	9.21
	687.16
	1014.3

	poly3_bound_OOCC
	3
	11.3
	246.82
	4436.6

	poly2_bound_log10_abs_curvature
	2
	9.21
	70.925
	464.02

	poly2_log10_ADT
	2
	9.21
	137.65
	104.25

	poly2_scrim-0.5000
	2
	9.21
	104.52
	416.16

	poly3_bound_abs_gradient
	3
	11.3
	73.606
	84.394

	poly3_bound_adj_log10_iri
	3
	11.3
	32.22
	42.277

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	46.788
	42.724

	bound_log10_abs_curvature × scrim-0.5000
	1
	6.63
	28.369
	28.369
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7.2 Include texture and interaction

I repeat the analysis for all crashes with additional terms for mean texture depth and its interaction with curvature and show the graphs of crash rate versus mean texture depth for various curvatures. I show the analysis of variance table for just the terms involving the mean texture depth.
	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	poly2_bound_tex_mean_depth
	2
	9.21
	29.009
	75.174

	poly2_bound_log10_abs_curvature × poly2_bound_tex_mean_depth
	4
	13.3
	58.924
	58.924


[image: image81.emf] 10


 100


 0


 0.5


 1


 1.5


 2


 2.5


 3


 3.5


 4


Crash rate


tex_mean_depth


Crash rate versus tex_mean_depth


10000, 0


3000, 0


1000, 0


300, 0


100, 0




 10

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4

Crash rate

tex_mean_depth

Crash rate versus tex_mean_depth

10000, 0

3000, 0

1000, 0

300, 0

100, 0


These terms do appear to be statistically significant. The graph for the 100 radius curvature and the upwards slope of the graph for high values of mean texture depth may be a result of polynomial fit.
However, I am very suspicious of any results concerning texture for the reasons stated in section 3.17.
7.3 Include mean rut depth plus interaction

I repeat the analysis for all crashes with additional terms for the mean rut depth and its interaction with curvature and show the graphs of crash rate versus mean rut depth for various curvatures. I show the analysis of variance table for just the terms involving the mean rut depth.
	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	poly2_sqrt_bound_rut_mean
	1
	6.63
	37.159
	39.661

	poly2_bound_log10_abs_curvature × bound_rut_mean
	2
	9.21
	58.43
	58.43
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The interactions terms do appear to be statistically significant. However, the results don’t make much sense and some more analysis is required to see what is going on.
7.4 Include year × region interaction

The previous analyses are robust against variations in crash rate due to changes in reporting rates, policing, changes in traffic volume, weather provided they were the same across the whole network. Likewise, variations from region to region would not be a problem provided they remained the same from year to year. However, if the year to year changes varied from region to region then there could be a problem.

We can, at least partially, compensate for year to year changes that vary from region to region by including a year × region interaction term in the analysis. This substantially increases the computer time required, but is feasible.
I have run this analysis for all crashes and wet crashes. The estimates are almost identical to the corresponding ones in section 5. Here is the analysis of variance table for all crashes. 

	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	96.854
	521.06

	region
	13
	27.7
	44.891
	675.18

	urban_rural
	1
	6.63
	27.946
	484.56

	adj_skid_site
	2
	9.21
	4705.6
	6291.9

	poly3_bound_OOCC
	3
	11.3
	452.66
	5402.2

	poly2_bound_log10_abs_curvature
	2
	9.21
	110.14
	460.85

	poly2_log10_ADT
	2
	9.21
	579.81
	517.45

	poly2_scrim-0.5000
	2
	9.21
	225.5
	266.24

	poly3_bound_abs_gradient
	3
	11.3
	45.924
	65.845

	poly3_bound_adj_log10_iri
	3
	11.3
	81.861
	108.67

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	105.56
	107.61

	year × region
	117
	155.5
	274.61
	274.61


Apart from year and region the entries are almost the same as in the corresponding table in section 5.2.1.
We can also repeat the fit test of section 5.5.

	
	All crashes
	Wet crashes

	Number of crashes
	22870
	6476

	Chi-squared value
	672
	619


The results are almost unchanged.
So changing patterns of reporting rates, policing, changes in traffic volume, weather do not seem to be a problem. There could of course be more subtle changes which these analyses would not detect. See section 5.5.
7.5 Serious and fatal crashes

The previous analyses have used all reported crashes that have involved at least one fatality, serious injury or minor injury. Minor injury crashes have a low reporting rate and this is may be variable over time and over the country. With ten years data it is possible to carry out some of the analyses with only fatal and serious injury data. Crash numbers were given in section 3.4. I have repeated the analysis for all crashes and wet crashes using only the serious and fatal data. The following two sections give the analysis of variance tables and the predictor graphs for SCRIM and IRI.  
7.5.1 All serious/fatal crashes

	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	154.58
	127.38

	region
	13
	27.7
	69.341
	196.97

	urban_rural
	1
	6.63
	64.973
	1.3263

	adj_skid_site
	2
	9.21
	1167.7
	1379.8

	poly3_bound_OOCC
	3
	11.3
	147.83
	1835.6

	poly2_bound_log10_abs_curvature
	2
	9.21
	22.536
	153.84

	poly2_log10_ADT
	2
	9.21
	275.36
	250.43

	poly2_scrim-0.5000
	2
	9.21
	61.674
	67.457

	poly3_bound_abs_gradient
	3
	11.3
	9.0996
	11.754

	poly3_bound_adj_log10_iri
	3
	11.3
	13.212
	8.7159

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	21.354
	21.354
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The gradient and IRI terms are barely statistically significant, even if we don’t apply the adjustment factor discussed in section 7.5.3 below. However, the predictor graphs are remarkably similar to those for all crashes in sections 5.3.9 and 5.3.11. The other graphs, not shown here, are also similar.
7.5.2 Wet serious/fatal crashes

	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	82.281
	47.539

	region
	13
	27.7
	52.372
	132.35

	urban_rural
	1
	6.63
	39.751
	33.754

	adj_skid_site
	2
	9.21
	196.88
	235.06

	poly3_bound_OOCC
	3
	11.3
	66.906
	1160.8

	poly2_bound_log10_abs_curvature
	2
	9.21
	11.109
	111

	poly2_log10_ADT
	2
	9.21
	43.878
	26.218

	poly2_scrim-0.5000
	2
	9.21
	111.01
	115.24

	poly3_bound_abs_gradient
	3
	11.3
	13.693
	15.982

	poly3_bound_adj_log10_iri
	3
	11.3
	4.6432
	2.0679

	poly2_bound_log10_abs_curvature × poly2_bound_adj_log10_iri
	4
	13.3
	12.69
	12.69
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The IRI terms are now not statistically significant even without any adjustment term. The graph for SCRIM is similar to the corresponding one in section  5.3.16 and the graph for IRI somewhat similar to the one is section 5.3.17.
7.5.3 Fit test
We can repeat the fit test of section 5.5.

	
	All crashes
	Wet crashes

	Number of crashes
	7088
	1853

	Chi-squared value
	287
	332


The chi-squared values are now substantially reduced. I expect this to be because the random variation of the crash data is partially masking whatever is causing the lack of fit.

This suggests an adjustment factor of 2.3 for all crashes and a slightly higher value for the wet crashes.

8 IRI variance terms
The IRI variance measurements measure the IRI at various wavelengths. These are available for 2006 to 2009 for wavelengths of 3 metres, 10 metres and 30 metres.

I repeated the analyses for all crashes with the IRI term being replaced, in turn, by each of these IRI variance measurements. I also carried out the analysis with the regular IRI measurement for the same years as a comparison. In each case I adjusted for curvature and gradient as before. To simplify the analyses I used the spline model fitted separately for the increasing and decreasing sides of the road as in the 2004 analyses.

The following table shows the R-squared values for the fit of the dependence of the IRI variance on curvature and gradient. The dependence is strongest for the 10 and 30 metre wavelength data and weakest for the 3 metre wavelength data and the usual IRI.
	
	Wavelength
	3 metre
	10 metre
	30 metre
	IRI

	R-squared for curvature/gradient adjustment
	increasing
	6%
	16%
	18%
	7%

	
	decreasing
	7%
	16%
	19%
	8%


I plotted two dimensional histograms of each set of pairs of the adjusted IRI measurements. Here are the pair-wise plots.
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In all cases there is an obvious relationship between each member of the pair.
I repeated the analysis of variance with the usual IRI and with the usual IRI replaced, in turn, by each of the three IRI variance terms. The following table shows the log-likelihood for each of the four analyses relative to the value for the usual IRI and the type I chi-squared value for the IRI term and for its interaction with curvature.
	
	Wavelength
	3 metre
	10 metre
	30 metre
	IRI

	Log-likelihood
	
	-9.4
	1.7
	-17.1
	0

	Chi-squared in ANOVA table
	IRI term
	71
	71
	34
	78

	
	interaction
	50
	64
	44
	57


The model with the 10 metre wavelength IRI fits best but is not statistically significantly better than the usual IRI. The 30 metre wavelength IRI fits worst.
Here are the graphs of the crash rate predictions for the various versions of the IRI. They are all quite similar.
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9 Curve model
See http://www.robertnz.net/pdf/report_curves3.pdf for details of the curve model. I have run this with the current set of data. The model is the same as before except that I am now including a term for roughness plus its interaction with advisory speed.

The results are almost the same as in the previous study. Here is the analysis of variance table
	Predictor variable
	df
	1% pt.
	Chi-squared

	
	
	
	Type III
	Type I

	year
	9
	21.7
	151.33
	150.66

	region
	13
	27.7
	140.91
	201.76

	poly3_OOCC-30.0000
	3
	11.3
	337.62
	1127.1

	poly3_AS-50.0000
	3
	11.3
	4.6604
	9.327

	poly2_scrim-0.5000
	2
	9.21
	107.78
	75.253

	poly3_log10_ADT-3.0000
	3
	11.3
	129.19
	122.62

	poly2_gradient_app
	2
	9.21
	17.856
	19.841

	poly3_adj_log10_iri
	3
	11.3
	37.886
	32.753

	poly2_adj_log10_iri × poly2_AS-50.0000
	4
	13.3
	39.654
	39.654

	
	
	
	
	

	poly2_sqrt_lengthR-15.0000
	2
	9.21
	36.573
	36.573


Here are the predictor plots. Note that in line with the previous study, the crash rate scale is linear rather than log.
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Apart from the graph of adjusted IRI, which is new, the graphs are very similar to those of the previous report.
It is somewhat marginal whether the IRI should have been included. However, its message seems to be that roughness is important only for the curves with high minimum advisory speeds. And that is in line with the rest of this report.

10 Discussion

The most striking result is the close agreement with the analyses of the 1997-2002 data.
The inclusion of the interaction term between roughness and curvature suggests that roughness is a factor for curves where traffic is going at close to full speed but there still is some curvature.

There is a suggestion that skid-resistance is more important on curves than on straight roads. This makes sense. At present I am not able to quantify the dependence very precisely.

The agreement between the analyses when we look at all casualty crashes and those when we consider only serious/fatal crashes suggests that the low reporting rates associated with minor injury crashes is not a serious problem. Similarly there is little change when we include the year × region interaction and this also suggests that reporting rates are sufficiently consistent for the analyses to be valid.

We still find more variability in the data than the Poisson model would predict. Of course, we can’t expect the model to fit exactly as there are numerous things not included and we may be getting the best fit than one can reasonably expect. However it is possible that the problem lies in the estimates of average daily traffic and it may be worth investigating this further. Ideally the analysis should be improved to take account of this variability. One approach is through adding an additional random effects term. Another is using a statistical technique known as The Jack-Knife to find improved significance tests and confidence intervals.

The presence of the ADT (average daily traffic volume) term in the regression part of the model is also slightly worrying. It suggests that there are other road characteristics that are not included in the model that are present in low ADT roads. It is easy to suggest a number of these – for example, lower standard of driving, less policing, poorer signage, more hazards on the edge of the roads, and so on. It is also possible that there is a bias in the measurement of ADT on low ADT roads, but I would not have thought it sufficient to cause the effect we see.
In needs to be remembered that this is a retrospective analysis as opposed to a designed experiment. So it is not possible to be sure that the predictor variables used in the regression analysis are really the ones affecting the crash rates. I have already suggested that this is the case with the ADT effect. Roughness, in particular, could be a surrogate for a number of characteristics associated with roads in need of repair.
� see web pages � HYPERLINK "http://www.robertnz.net/pdf/crashrisk8.pdf" ��http://www.robertnz.net/pdf/crashrisk8.pdf� and � HYPERLINK "http://www.robertnz.net/pdf/report_curves3.pdf" ��http://www.robertnz.net/pdf/report_curves3.pdf� 


� � HYPERLINK "http://www.robertnz.net/pdf/OOCC_report2.pdf" ��http://www.robertnz.net/pdf/OOCC_report2.pdf�   


� � HYPERLINK "http://www.robertnz.net/pdf/report_curves3.pdf" ��http://www.robertnz.net/pdf/report_curves3.pdf�
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