Simulation of a stationary Gaussian time-series

Robert B Davies
4 June, 2001

We are given the auto-covariances for a stationary Gaussian time-series observed at equal time intervals and wish to simulate this series. A method for doing this was described in Davies & Harte (1987).

I am often asked for more explanation. So here is some additional information and a C++ program using my libraries for implementing it.

The method has been rediscovered several times – our publication may have been second. For an earlier reference see Ripley (1987, page 110) and Davis et al (1981). For a later reference see Wood and Chan (1994) – but they give a generalisation to multiple dimensions.

Suppose we want to generate a stationary Gaussian time-series of length $n+1$ with mean 0 and auto-covariances c_0, c_1, \ldots, c_n. The method is as follows:

Find the finite Fourier transform of the sequence \{c_0, c_1, \ldots, c_n, c_{n-1}, \ldots, c_1\}. \hfill (1)

That is

\[
g_k = \sum_{j=0}^{n-1} c_j \exp \left(\frac{2\pi ijk}{2n} \right) + \sum_{j=0}^{2n-1} c_{2n-j} \exp \left(-\frac{2\pi ijk}{2n} \right) \hfill (2)
\]

for $k = 0, \ldots, 2n - 1$. You can use the discrete cosine transform for carrying out transform (2). The series \{g_k\} will be real, but for the method to work it must also be non-negative. If any of the g_k are negative, the method fails. I haven’t found this to be a problem. However, if any of the g_k are negative it may be possible to solve the problem by choosing a larger value of n and possibly adjusting the values of the auto-covariances at the centre of the sequence (1), for example c_{n-1}, c_n, c_{n-1}, to make the sequence smoother.

1 Neither of these papers has the transform quite correct and neither notes that the method is exact for a process on a line (end not connected to the beginning) if you use only half of the Xs. So perhaps we really were first. In any case, use the version given here rather than the versions given in those papers.
Generate a sequence of independent complex normal random numbers \(\{Z_0, Z_1, \ldots, Z_{2n-1}\} \) where \(Z_0 \) and \(Z_n \) are real with variance 2; \(\{Z_k : k = 1, \ldots, n - 1\} \) have independent real and imaginary parts, each with variance 1 and \(Z_k = Z_{2n-k} \) for \(n < k < 2n \).

Then the time-series

\[
X_j = \frac{1}{2\sqrt{n}} \sum_{k=0}^{2n-1} Z_k \sqrt{g_k} \exp \left(\frac{2\pi ijk}{2n} \right)
\]

for \(0 \leq j \leq n \) has the required distribution. You can compute this using the inverse of the finite Fourier transform of a real sequence.

To prove that the method works first invert the Fourier transform (2):

\[
c_j = \frac{1}{2n} \sum_{k=0}^{2n-1} g_k \exp \left(-\frac{2\pi ijk}{2n} \right) = \frac{1}{2n} \sum_{k=0}^{2n-1} g_k \exp \left(\frac{2\pi ijk}{2n} \right)
\]

for \(j = 0, 1, \ldots, n \).

The \(\{X_j\} \) sequence (3) is real because the imaginary terms in its definition cancel. Hence

\[
\text{cov}(X_p, X_q) = E(X_p X_q) = E(X_p \overline{X_q}) = \frac{1}{4n} \sum_{k=0}^{2n-1} \sum_{l=0}^{2n-1} E(Z_k \overline{Z_l}) \sqrt{g_k g_l} \exp \left(\frac{2\pi i(pk-ql)}{2n} \right).
\]

Now \(E(Z_k \overline{Z_l}) = 0 \) if \(k \neq l \) (by independence if \(l \neq 2n-k \) and because \(E(Z_k \overline{Z_{2n-k}}) = E(Z_k^2) = 0 \)). Also \(E(Z_k \overline{Z_k}) = 2 \). Hence

\[
\text{cov}(X_p, X_q) = \frac{1}{2n} \sum_{k=0}^{2n-1} g_k \exp \left(\frac{2\pi i(p-q)k}{2n} \right) = c_{p-q}
\]

for \(0 \leq p - q \leq n \) which is what we wanted.

Beran (1994) gives S-plus code for using this method for generating various long memory processes.

Here is a C++ program for generating fractional Gaussian noise using my matrix and random number programs.

See \url{http://www.robertnz.net/ol_doc.htm} for details of my libraries.
// Simulation of stationary Gaussian process
#define WANT_STREAM
#define WANT_MATH

#include "newmatap.h" // newmat applications
#include "newmatio.h" // newmat output package
#include "newran.h" // random number library

// Stationary Gaussian process simulation class
class SGS
{
 ColumnVector G; // to hold G(k)
 Normal normal; // normal random number generator
 int N1; // n+1

public:
 SGS(const ColumnVector& AC);
 void Simulate(int n, ColumnVector& X);
};

// AC contains the auto-covariances - length must be odd
// AC(1) contains the variance
// AC(2) contains the lag 1 auto-covariance
// AC(3) contains the lag 2 auto-covariance etc
SGS::SGS(const ColumnVector& AC)
{
 N1 = AC.Nrows();
 if (!(N1 & 1)) Throw(Runtime_error("SGS: length of AC must be odd"));
 DCT(AC, G); // Cosine transform
 for (int k = 1; k <= N1; ++k)
 { double gk = G(k);
 if (gk < 0.0) Throw(Runtime_error("SGS: negative gk"));
 G(k) = sqrt(2.0 * gk);
 }
}

// n is the length of the sequence to be returned - must be no more than the
// length of AC
// The sequence is returned to X.
void SGS::Simulate(int n, ColumnVector& X)
{
 if (n > N1) Throw(Runtime_error("SGS: too many observations requested"));
 double Sqrt2 = sqrt(2.0);
 ColumnVector U(N1), V(N1); // real and imaginary parts of Z array
 for (int k = 2; k < N1; ++k)
 { U(k) = G(k) * normal.Next(); V(k) = G(k) * normal.Next(); }
 U(1) = Sqrt2 * G(1) * normal.Next(); V(1) = 0.0;
 U(N1) = Sqrt2 * G(N1) * normal.Next(); V(N1) = 0.0;
 RealFFTI(U, V, X); // inverse of real FFT
 X = X.Rows(1,n) * sqrt(N1-1); // select first n values & rescale
}

int main()
{
 Try
 {
 Random::Set(0.3445821955); // initialise RNG

 // Generate 100001 numbers from fractional Gaussian noise process
 int N1 = 100001;
 double H = 0.75; // the value of H we are going to use
 double H2 = 2.0 * H;
 ColumnVector AC(N1); // for the auto-correlations
 AC(1) = 1.0;
 for (int i = 1; i < N1; ++i)
 { double gk = AC(i) * H2;
 AC(i) = sqrt(2.0 * gk);
 }
 SGS SGs(AC);

 // calculate auto-covariances - needs some more work
 if (i < 10000)
AC(i+1) = 0.5 * (pow(i+1,H2) + pow(i-1,H2)) - pow(i, H2);
else
AC(i+1) = pow(i, H2 -2) * H * (H2 - 1);
}
SGS Hurst(AC); // set up simulation structure
ColumnVector X; // for the results
Hurst.Simulate(N1, X); // do simulation

// print out the variance and first few auto-covariances
cout << "variance = " << X.SumSquare() / N1 << endl;
cout << "cov: lag 1 = " << DotProduct(X.Rows(1,N1-1),X.Rows(2,N1)) / (N1-1) << endl;
cout << "cov: lag 2 = " << DotProduct(X.Rows(1,N1-2),X.Rows(3,N1)) / (N1-2) << endl;
cout << "cov: lag 3 = " << DotProduct(X.Rows(1,N1-3),X.Rows(4,N1)) / (N1-3) << endl;
cout << "cov: lag 4 = " << DotProduct(X.Rows(1,N1-4),X.Rows(5,N1)) / (N1-4) << endl;
cout << "cov: lag 5 = " << DotProduct(X.Rows(1,N1-5),X.Rows(6,N1)) / (N1-5) << endl;
cout << "Theoretical values" << endl;
cout << setw(11) << setprecision(6) << AC.Rows(1,6).t() << endl;
return 0;
}

CatchAll
{
 cout << "Simulation fails" << endl;
cout << Exception::what() << endl;
exit(1);
}

References

