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SUMMARY

We consider the power of tests for distinguishing between fractional Gaussian noise
and white noise of a first-order autoregressive process. Our tests are based on the
beta-optimal principle (Davies, 1969), local optimality and the rescaled range test.
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1. INTRODUCTION

Fractional Gaussian noise has been proposed as a model (Mandlebrot & Van Ness,
1968) for the long-term dependence postulated to occur in a variety of hydrological and
geophysical time series. See Hurst (1951) for an example based on the flows of the River
Nile. A test known as the rescaled range test has been used to detect long-term dependence.
Our purpose is to derive optimal tests for detecting long-term dependence and to compare
their power with that of the rescaled range test.

Let X, ..., X, denote a series of observations on which it is proposed to carry out a
test for long-term dependence. We suppose that the X; are normally distributed. Then
{X;} is known as fractional Gaussian noise if

cov (X, X;) = 0p(i—j), (1-1)
where
p () =3fi+1 +3li =17 —[i|*". (1-2)
The parameter, H, determines the extent of the dependence, H =4 corresponding to
independence and ;< H <1 corresponding to long-term dependence. Note that, for i
large, p(i) ~ H(2H —1)|i|*” 2 so that the usual asymptotic time series methods (Davies,
1983) may not apply.

First we consider the hypothesis of independence. That is, we wish to test the hypothesis
H =3 against the alternative 3 < H <1. We have derived two tests. The first is the locally
optimal test which maximizes the derivative of the power function at H =3 (Rao, 1973,
p. 453). The second is a test introduced by Spjgtvoll (1967) and Davies (1969) which
minimizes the value of H for which a prescribed power, say 80%, is reached. Davies
(1969) calls this the beta-optimal test and shows how it may be derived as a likelihood
ratio test. The formulae for these tests are given in § 3.

The rescaled range test was suggested by Hurst’s original observations on the Nile and
is based on the minimum size for a reservoir if it were not to overflow or run dry over
a given period of time. In § 2 of this paper a version of this test is precisely defined so
that its power can be found.
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In § 4 we present the results of our power calculations. These show that the locally
optimal test is very close to being optimal. However a test which depends only on the
first autocorrelation does almost as well, suggesting that long term dependence is not the
dominant feature of the fractional Gaussian noise process for the sample sizes we consider.
The rescaled range test is found to be substantially less powerful than the other tests
requiring about double the sample size to get the same power.

In § 5 we consider tests to discriminate between a first-order autoregressive process
and a fractional Gaussian noise. The locally optimal and rescaled range tests turn out
to be highly sensitive to the autoregressive alternative. We show that it is very difficult
to reliably distinguish these two processes and a series length of at least several hundred
will be needed before good discrimination is possible. We look at two tests and estimate
their power by simulation.

For the simulations we require a fast way of simulating a process with covariances
given by (1-1). Our method is described in the Appendix.

2. THE RESCALED RANGE TEST

The rescaled range test for Hurst effect was introduced as a graphical technique
(Mandlebrot & Wallis, 1969). For finding the power of this test we need a precise
formulation.

Let S(¢, d) be the sample standard deviation of the observations from time ¢ to time
t+d -1, and R(t, d) the minimum reservoir size required over the same period if the X
represent river flows. That is

S d)="3 Xi/d—{X(td)P,

1<sus<d 1<su=<d

t+u—1 _ t+tu—1 _
R(t, d)= max { Y Xj—uX(t,d)}— min { Y X,-—uX(t,d)},
Jj=t Jj=t

where X(t,d)=(X,+ -+ X,14-,)/d.

The ratio R(t,d)/S(t, d) is called the rescaled range. The rescaled range test consists
of first averaging the values of the rescaled range for a number of values of ¢ for a given
value of d. Let Q(d) denote this average. Then log {Q(d)} is plotted against log d. For
a fractional Gaussian noise process this graph should have slope H for large d. See
Mandlebrot (1975) for more details and Anis & Lloyd (1976) for a calculation of E{Q(d)}
when the process is white noise.

For our simulations the values of d and ¢ were chosen as follows.

(i) Choose w values for d: d;=int(n/j) for j=1,...,6 or int(d;_,/1-15) for j =
7, ..., w, where w is chosen so that d,, = 3 and int denotes truncation to the integer
part of a number.

(i) For each value of j choose t:i=1,...,u, where u;=int (n/d;), and t;=
int {3(n—du;)} for i=1, or t;_;+u; fori=2,...,u;.

Then let

Q(d) = Y. {R(h, &)/ (1 )}/
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The slope, H, is then found using ordinary least-squares linear regression of log {Q(d;)}
on log d;. Our test is to reject the hypothesis of white noise in favour of the fractional
Gaussian noise alternative if H is large. The critical point and power was found by
simulation using a sample size of 1000 for calculating the critical point and either 200
or 500 for calculating powers. Results are reported in § 4 of this paper.

3. LOCALLY OPTIMAL AND BETA-OPTIMAL TESTS

We suppose the X, ..., X,, denoted collectively by the column vector X, are normally
distributed with covariance matrix given by (1:1). We wish to test the hypothesis of
independence, H =3, against the alternative H >3. The locally optimal and beta-optimal
tests can be derived in a similar way to the derivations of Spjgtvoll (1967) and Davies

(1969).
The locally optimal test has critical region
[X{c(I-11"/n)—(I—-11"/n)T(I-11'/n)}X <0], 31
where :
0 | (i=j),
T,;={ log2 - (i=jx1), (3-2)

Yli—jllog {1 —(i—j) 2} +log {(Ji—jl+1)/(li=j|=1)}] otherwise,

1 denotes an n-dimensional vector of ones, I denotes the n X n identity matrix, and c is
a constant selected to give the desired significance level. The matrix T is of Toeplitz
form and so (3-1) can be evaluated in O(n log n) operations using a fast Fourier transform

program.
The beta-optimal test has critical region
[X{¥y—c(I-11'/n)}X <0], (3-3)
where
\I'H=¢;‘—¢;‘11'¢;‘/(1’¢;‘1) (3-4)

and ®; is an n X n matrix with (i, j)th element equal to p(i —j), where p is as defined by
(1-2). Formula (3:3) involves constants ¢ and H which must be selected as follows.
Suppose we wish the power funcfion to reach a power 8 for as small a value of H in
(1-2) as possible. Then ¢ and H must be chosen so that (3-3) has the desired significance
level and power equal to 8 when H in (1-2) is equal to H in (3-3).

4. POWER FUNCTIONS

We report on the powers of the tests introduced in the previous sections. The computer
programs made extensive use of subroutines from the IMsL subroutine library for matrix
manipulation, eigenvalue calculation and solving nonlinear equations. Distributions of
a quadratic form in normal random variables were calculated using a Fortran translation
of the algorithm of Davies (1980).

Powers of the beta-optimal, locally optimal, and rescaled range tests for selected values
of n and H are displayed in Table 1. In all cases the significance level, a =0-05 and the
beta-optimal test uses B8 =0-8. The numbers in parentheses for the rescaled range test
are twice the standard error for the estimate of power.
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Table 1. Powers of tests against fractional Gaussian noise

n H=0-55 H =0-65 H=0175 H =085 H =095
50 Beta-optimal test 0-13 0-42 0-75 0-93 0-98
Locally optimal test 013 0-42 0-73 0-91 0-98
Correlation 0-12 0-40 0-73 0-92 0-98
Rescaled range test 0-13 (0-05) 0-33 (0-07) 0-53 (0-04) 0:77 (0-06) 0:91 (0:04)
100 Beta-optimal test 0-19 0-69 0-96 0-998 1-000
Locally optimal test 0-19 0-68 0-95 0-996 1-000
Correlation 0-17 0-65 0-95 0-998 1-000
200 Beta-optimal test 0-29 0-93 0-999 1-000 1-000
Locally optimal test 0-29 0-92 0-999 1-000 1-000
Correlation 0-25 0:90 0-999 1-000 1-000
Rescaled range test 0:17 (0-05) 0-61 (0-07) 0-94 (0-03) 0-98 (0-02)

For practical purposes the beta-optimal and locally optimal tests have the same power
functions and there is no point in using the more complex beta-optimal test. We have
also included a test based on the first-order autocorrelation of the process. Perhaps
surprisingly, this test does almost as well as the other tests, particularly for low values
of n. The rescaled range test is rather less powerful. With n =200, it has a similar power
to the other tests with n around 75 to 100.

A second alternative one might wish to look at is to suppose that our process is the
sum of a fractional Gaussian noise process with known H, say H = 0-75, and white noise.
The hypothesis is, as before, that the process is pure white noise. Locally and beta-optimal
tests can be found for this situation. In fact, the locally optimal test given in § 3 is close
to optimal for H =0-75 and the values of n tested, that is, n <200, whereas the locally
optimal test derived specifically for this fractional Gaussian noise plus white noise
situation was noticeably poorer.

5. AUTOREGRESSIVE HYPOTHESIS

So far we have considered only white noise as the hypothesis. Ideally we would like
our tests to be insensitive to the first-order autoregressive alternative

Xi=yXi_te, (5'1)

with 0< y <1 and ¢; a sequence of independent identically distributed normal variables.
In Table 2 we have listed the powers of the locally optimal test (3-1) and rescaled range
test against a first-order autoregressive alternative. In all cases the powers are unacceptably
high although the rescaled range test is more robust than the locally optimal test.

Table 2. Powers of tests against autoregressive alternative

Autoregressive parameter

n -0-1 0-0 01 0-2 0-3
Locally optimal test 50 0-01 0-05 0-15 0-33 0-58
100 0-01 0-05 0-22 0-53 0-83
200 0-00 0-05 0-33 0-79 0-98
Rescaled range test 50 0-02 (0-02) 0-05 012 (0-04) 0-19 (0-05) 0-32 (0-06)

200 0-05 0-11 (0-04) 0-27 (0-06) 0-47 (0-07)
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We would like to treat (5-1) with 0= y <1 as the hypothesis, so that our test has power
no more than the significance level, a, under (5-1). For the alternative we could consider
pure fractional Gaussian noise or the process generated by (5-1) with the ¢; being
fractional Gaussian noise. Most of what follows is applicable to either situation. So far
we have not found a fully satisfactory test.

We can find an upper bound on the power of such a test. For a given alternative let
B, denote the power of the optimum level « test of the hypothesis (5-1) with a given
value of y. Then min (B,: 0<y<1) is an upper bound on the power of the test of the
hypothesis (5-1) with unknown y. Heuristic arguments given by R. B. Davies in his
Berkeley thesis suggest that this bound may be quite sharp. For the present problem with
a pure fractional Gaussian noise alternative, B, can be calculated; the likelihood ratio
test statistic being the ratio of two terms of the form XWX with ¥ being as in (3-4) in
the numerator and a corresponding form for an autoregressive process in the denominator.

Our results are given in Table 3. The value of y at which the minimum is achieved is
almost independent of n over the range considered and is listed in the table. As will be
seen from the table the powers are very low and a sample of at least several hundred
will be required to achieve satisfactory discrimination.

Table 3. Bound on power of test with autoregressive process hypothesis

n H=0-60 H =0-75 H =090
50 0-10 0-18 0-22
100 0-15 0-34 0-45
200 0-25 0-60 0-83
Autoregressive Parameter 0-15 0-36 0-57

One possible test simply looks at the second partial autocorrelation. The test statistic
may be derived from a multiple linear regression where one is fitting the first and second
lagged X values. The test statistic for the second lagged term is

(CoCy— C%)/{Co( Co— Cz)(C(2)+ GG, ‘ZC%)/"}i,

where C,, C;, C, denote the estimators of the variance and first and second autocovari-
ances. Under the hypothesis (5-1) its asymptotic distribution is standard normal and it
will tend to be large positive for a fractional Gaussian noise process with H >3. Note
that this test is appropriate only for the pure fractional Gaussian noise alternative as the
second partial autocorrelation can be negative in some instances for the combined
fractional Gaussian noise autoregressive process.

A second test is derived as a C(a) test. See Neyman (1959) for C(a) tests applied to
the independent identically distributed situation. In fact, Neyman’s formulae can be
applied to more general situations if they are applied to the whole likelihood rather than
to the individual observations. Under suitable regularity conditions, for example those
of Davies (1983), the resulting tests will be asymptotically optimal. For the present
problem the regularity conditions do not apply and asymptotic optimality cannot be
guaranteed. Similarly significance probabilities given by C(a) theory may not be correct
and must be verified by simulation.

For simplicity suppose we observe n + 1 points, X, ..., X,. Let Z be an n-dimensional
vector, composed of the residuals after fitting a first-order autoregressive process: Z; =
X;— yXi-,, where v is to be replaced by an estimate of the first autocorrelation. The
C(a) test statistic is then calculated as a function of the Z;, regarding X, as given.



100 R. B. Davies AND D. S. HARTE
Denote the average of the Z, by Z Let u, = Toin (3:2), v(y)=7"",

W)= X (n=iun(y) L (n=nyP, w(y)=u—d(n)u(r),
n—i n—1 n—1 } (52)
D=3 (Z-Z)Zu~2), S=3 w(nD, / {Do ) (n—f)w;(y)Z/(n—l)} :
j= i= i=
We must replace y by an estimate in (5-2). We used the first-order autocorrelation of
the X;. Then our C(a) test rejects the hypothesis when S is large. For n=1000 the
normal approximation seems adequate for the distribution of S but fails for n<200. In
this case an adequate approximation to the critical point was found by setting y=0 in
(5:2) and using the quadratic form program.

Simulations were carried out for these two tests and the results are listed in Table 4.
In each case 1000 simulations were made. For H =0-6, 0-75, the C(a) test is doing well
compared with the partial correlation test and fairly well compared with the bound.
When H =0-9 the local nature of the C(a) test is becoming very obvious. The problem
may lie in using an estimate for y that is good only under the hypothesis H =1.
Unfortunately a satisfactory estimate of y for general H is difficult to find. Nevertheless
for n=1000, our C(«a) test seems quite reasonable.

Table 4. Power of tests of an autoregressive process hypothesis

n=200 n =1000
Process Part. corr. Cla) Part. corr. C(a)
test test test test
White noise 0-03 0-05 0-04 0-04
Autoregressive process
y=0-3 0-03 0-03 0-04 0-03
0-6 0-04 0-03 0-02 0-03
0-9 0-04 0-11 0-03 0-06
Fractional Gaussian noise
H =0-60 0-13 0-21 0-39 0-63
0-75 0-31 0-40 090 0-98
0-90 0-40 0-12 0-98 0-57

However robustness is claimed only against a first-order autoregressive process and it
is hard to see how one could expect to be able to distinguish a fractional Gaussian noise
process even from, say, a first-order autoregressive, first-order moving average process
without a very long series, say of length 1000.

APPENDIX

Simulating a stationary Gaussian time series
The following method was used to generate the fractional Gaussian noise process used in the
simulations. When a fast Fourier program is used for carrying out the transforms O(n log n)
operations are required for generating a series of length n+1.
We wish to generate a Gaussian time series, {X;} for i=0,..., n with autocovariances
Co, €1, - . . . Let g denote the finite Fourier transform of the sequence

{809 Crsevny Ca—15Cns Cpyye oo ) cl}'

That is

&= Zl ¢; exp {2mikj/ (2n)}+2"2:.l Cn—jexp {27ikj/(2n)} (k=0,1,...,2n-1).

j=0 j=n
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The series {g,} will be real, but for the method to work it must also be nonnegative. If any of the
g, are negative then the method fails. This has not been a problem in the series used in this paper.

Let {Z.} be a sequence of independent complex normal random variables with independent
real and imaginary parts, for 0<k<n, and let Z, = Z,,_, for n<k<2n. Let Z, and Z, be real
with variances equal to two, otherwise, for 0< k < n, let the real and imaginary parts of Z, have
unit variance.

Then the time series

2n—1

X;=in? Y Z.g}exp {2mijk/(2n)},
k=0

for 0=<j =< n, has the required distribution.
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