STATISTICAL ALGORITHMS 323
Algorithm AS 155

The Distribution of a Linear Combination of x> Random
Variables

By ROBERT B. DAVIES
Applied Maths Division, D.S.I.R., Wellington, New Zealand

Keywords: CHARACTERISTIC FUNCTION; CHI-SQUARED VARIABLE; LINEAR COMBINATION; NORMAL
VARIABLE; NUMERICAL INVERSION; QUADRATIC FORM; RATIO OF QUADRATIC FORMS

LANGUAGE
Algol 60

DESCRIPTION AND PURPOSE
Let

Q= 31X, +0X,, (1)

where X ; are independent random variables, X; having a non-central x? distribution with n,
degrees of freedom and non-centrality parameter 67 for j = 1,...,r and X, having a standard
normal distribution. Then the purpose of this algorithm is to calculate

pr(@<c). 2

The algorithm is based on the method of Davis (1973) involving the numerical inversion of
the characteristic function. It will yield results for most linear combinations that are likely to be
encountered in practice but is more satisfactory if the sum (1) is not dominated by terms
involving a total of less than four degrees of freedom. The accuracy is set by the user, a maximum
error of 0-0001 being an appropriate value.

Any quadratic form in independent normal variables can be reduced to the form (1) and so
this algorithm can be used to calculate the distribution of such a quadratic form. Since the 4,
need not all be positive the quadratic form need not be positive definite. In particular, the
algorithm can be used to find the distribution of the ratio of two quadratic forms.

METHOD
The basic formula is formula (9) in Davies (1973) with the integration error being bounded as
in that paper. Not discussed is the truncation error

k_%‘; 1Im [P{(k+1/2)A} e~ **+ VDAY (ke +1/2)}, 3)
where ¢ is the characteristic function of Q given in Section 4 of Davies (1973) and A is the

integration interval. If | ¢(u) | < B(u) and B(u) is a monotonically decreasing function of u (for
u=U) then (3) is bounded by

k=§+ B{k+1/2) A} /a4 1/2)} < f‘: B/ () du @

where U = (K +1/2)A.
Writing

N(u) = exp { - 2u2j§1112 82/(1 +4u? ,112)}

324 APPLIED STATISTICS

three possible forms for B(u) are
N(u)exp (—U?6?/2)TI(1+4U? AZ)~MATT (du? AZ)~ il
(i) (ii)

where product (i) is over all values of j with I,lj |<1 and product (ii) is over values of J with
[4]>1;

N(U)exp(—u? 62/2)[T(1 +4U? 13)~
1
and
Ty —-1/4
N() {1‘[(1 +4U2 12)rexp QU 0?)— 1}
1

(U/w)'?<1-25N(U)exp(— U? 02/2)151(1 +4U2 22)" (U Ju)'?

provided
[1(1+4U% ZPexpQU? o) >e 5)
leading to bounds on the truncation error
{2/(n§)} N(U)exp(—U?6?/2) 1(;[(1 +4U 2)2)~mi4 (r! QU2 22)~mi4 (6)
where s = (%)nj;
{1/=U? 6%)} N(U)exp(—U? 6*/2) 1:](1 +4U? 12))
and '
(25/m)N(U)exp(—U? 6%/2) I1a +4U2 23~ ®)

provided (5) is satisfied. The algorithm uses the minimum of (6), (7) and (8) as the truncation
bound. Note that the bound (8) would need to be modified if the program was extended to allow
non-integer values of n;.

The truncation point, U, may sometimes be reduced by introducing a convergence factor.
Suppose that the characteristic function ¢(u) is multiplied by

exp(—12 u?/2)

corresponding to the addition of another normal variable tZ to the sum (1), Z being standard
normal. Then the error introduced

pr(Q+tZ<c)—pr(Q<c) = N e~ “lexp(—12 u?/2)— 1} p(w)/(2nmiu) du. 9)

-0

Suppose that c>0, a corresponding formula being available when ¢ <0. Then integrating along
u=v+ivfor —co<v<0and u = v—iv for 0<v< oo we obtain

|pr(@+1Z<)—pr(Q<d)|<(?/n) L mexp{v)::(1—4171,),1, 82/(1 —4vd, + 80 /1,2)}

X Il](l —4vA;+80v% AF) "/ ve""dvs(rz/n)f [12%% 8% exp {(v 3 Afn;+ 6} ve " dv
0o {

the product (i) and the sum (ii) involving only those values of j for which 4;>0; those
corresponding to large values of 4, being in the product (i) and the others in the sum (ii) with the

STATISTICAL ALGORITHMS 325

exact point at which the split is made being adjusted for the optimum bound. Evaluating the
integral yields the bound

(2/m) ST 2% 904~ 3 A+ 672 (10)

For large values of ¢ (10) will tend to be small and hence a useful factor will be able to be
introduced. However, (10) can also be used in a different way. We express

pr(@<c)={pr(@<c)—pr(Q+tZ<c)}+pr(Q+tZ <o) (11)

The first term on the right-hand side of (11) can be integrated numerically with integration error,
according to equation (7) of Davies (1973), being given by

T (=)P {pr(Q-+Z <c—2an/A)-pr (Q < c—2mn/A)
+pr(Q+1tZ <c+2nn/A)—pr(Q <c+2rnn/A)}. (12)

In (9), after replacing u by v—iv and summing

W

Y (= 1)"{pr(Q+tZ <c+2nn/A)—pr(Q <c+2nn/A)}

n=1
we find the term exp { —i(v—iv)c} must be replaced by
exp { —i(v—iv)(c+2n/A)} /{1 —exp(—w+iw)},

where w = 2nv/A. But |1/{1 —exp(—w+iw)} |<1'1 and so (10) applied to c+2n/A and its
analogue for negative constant to ¢ — 2rn/A can be used to bound the integration error (12). The
truncation error can be bounded as before. The second term in (11) may be evaluated by
numerical integration or possibly further split up. This completes the description of the error
bounds. The actual way they are used is best described by the algorithm itself.

The formula (9) of Davies (1973) used to compute (1) can be expressed as

K r r
12-% exp{—2u2 >).,2 5,2/(1 +4u? l})—uz 02/2} I1(1 +4u? ljz)"‘f/"
k=0 j=1 j=1

x sin {é‘,l [n; arctan (2ud;)/2 + 6} uA;/(1+4u? A7)} — uc} / {n(k+1/2)}, (13)

where we have written u for (k+ 1/2) A. For the auxiliary integration in (11) formula (13) must be
multiplied by
1 —exp(z? u?/2).

It is possible that the sum (13) contains terms which are of large magnitude and fluctuating sign
or that the argument of the sine function is large. In both cases significant round-off error could
accumulate. For this reason (13) is also calculated with the sine term replaced by the sum of the
absolute values of the summands of its argument. A fault indication is returned if this sum is
excessively large. In practice this does not seem to be a problem.

STRUCTURE
real procedure gf(Ib, nc, n, r, sigma, c, lim, acc, trace, ifault)

Formal parameters

b Real array [1:7] input : values of)”5

nc Real array [1:r] input : values of §;

n Integer array [1:r] input : degrees of freedom of jth term
r Integer value : number of ¥? terms in sum

sigma Real value : coefficient of normal variable

326 APPLIED STATISTICS

c Real value : point at which distribution function is to be
evaluated

lim Integer value : maximum number of integration terms

acc Real value : error bound

trace Real array [1:7] output : indicate performance of procedure:

trace[1] absolute value sum

trace[2] total number of integration terms
trace[3] number of integrations

trace[4] integration interval in main

integration

trace[S] truncation point in initial
integration

trace[6] standard deviation of convergence
factor term

trace[7] number of cycles to locate inte-
gration parameters
ifault Integer output : fault indicator:
ifault =0 no error
ifault = 1 requested accuracy could not be
obtained
ifault =2 round-off error possibly
significant
ifault = 3 invalid parameters
ifault =4 wunable to locate integration
parameters
Realistic values for “lim” range from 1000 if the procedure is to be called repeatedly up to
50 000 if it is to be called only occasionally. Suitable values for “acc” range from 0-001 to 0-00005
which should be adequate for most statistical purposes. Meaningful results are returned only if
“ifault” is returned as 0 or possibly 2.
To simplify use with compilers that require labels to be declared the positions of such
declarations have been noted with comments.
' RESTRICTION
It is supposed that at least one x term has non-zero degrees of freedom and non-zero 4, or
that ¢ is non-zero.
PRECISION
As far as possible numerical techniques have been used to enable single precision to provide
adequate accuracy with, for example, 32 bit word lengths. However if “ifault = 2” occurs,
indicating that round-off error might be significant, or extremely small values of “acc” are being
used, then procedure “integrate” and variables “intll”, “intl2”, “ersm1”, “ersm2” should be
converted to double precision and a double precision version of procedure “In1” included.
RELATED ALGORITHM
An alternative algorithm, AS 106, which can be adapted to calculate the distribution of (1)
provided that all the i, are positive and ¢ =0 has been published by Sheil and
O’Muircheartaigh (1977). In general, their algorithm is very much faster than the one presented
here if the total number of degrees of freedom is small with the ratio of the largest 4; to the
smallest 4, being not large. On the other hand, if the ratio of the largest 4, to the smallest 4, is very
large or the total number of degrees of freedom large this algorithm has the advantage
particularly if there are also large non-centrality parameters. Of course only this one is
applicable if the 4, are of varying sign or ¢>0; in addition it is more robust against extreme
parameter values such as large numbers of degrees of freedom, large non-centrality parameters
or large ratios of the 4;.

STATISTICAL ALGORITHMS 327

TABLE 1
Number of integration terms to calculate y* probabilities

Degrees of Non-centrality x* probability
Jfreedom parameter 001 05 099
1 0 9965 1327 182
2 0 1815 680 128
3 0 584 436 95
5 0 68 60 40
10 0 15 13 9
100 0 7 6 6
1 7-84 2268 494 81
3 11-56 35 28 19
5 12-96 16 13 9

TABLE 2
Number of integration terms to calculate F probabilities

Degrees of freedom F probability

Num. Den. 001 05 099
1 1 6110 1784 6110
1 3 4315 401 254
1 5 4210 167 47
3 3 182 31 182
3 5 182 23 41
5 5 41 12 41

TABLE 3

Performance of algorithm

Times (milliseconds)

Number of

Quadratic form c Probability terms AS 155 AS 106
6,1;3,1; 1,1 1 00542 744 2532 22
7 04936 625 2242 38
20 0-8760 346 1174 65
6,23,21,2 2 00064 74 269 19
20 06002 66 255 66
60 0-9838 50 203 176
6,6; 3,4, 1,2 10 0-0027 18 103 35
50 0-5648 15 96 168
120 09912 10 82 525
7,6,6; 3,2,2 20 00061 16 77 23
100 05913 13 70 88
200 09779 10 63 156
7,1,6; 3,1,2 10 00451 603 1554 22
‘ 60 0-5924 340 815 61
150 09777 87 260 113
7,6,6;3,2,2; 70 00437 10 100 92
7,1,6; 3,1,2 160 0-5848 9 95 198
260 09538 7 88 350
7,6,6; 3,2,2; —40 00782 10 98 —
-7,1,6; —3,1,2 40 0-5221 8 92 -

140 0-9604 10 96 e

328 APPLIED STATISTICS

PERFORMANCE AND TIMING

The number of terms required for the integration is determined approximately by the total
number of degrees of freedom and the sum of the non-centrality parameters of the dominant
terms in the sum (1) and by the value ¢, at which the distribution function is evaluated. Hence to
give some idea of the performance of the algorithm we have found the number of terms required
to calculate the distribution function of a ¥* random variable with various degrees of freedom
and non-centrality parameters. In each case, three values of ¢ have been used, corresponding to
distribution function values 0f0-01,0-5 and 0-99. The accuracy has been set to 0-0001. The results
are listed in Table 1. To indicate the performance for ratios of quadratic forms, we have also
found the number of terms required to calculate various central F probabilities. In each case
¢=0,4, = 1,and 4, is set to give the distribution values 0-01, 0-5 and 0-99. Again “acc” is set to
0-0001. The results are listed in Table 2. Of course, the algorithm is not intended for calculating
pure x?> and F probabilities so the poor performance for y*> with one degree of freedom
or the F, , distribution is not very worrying. With “genuine” linear combinations other
terms would usually be present in the sum to assist with convergence.

Finally we have tested the algorithm on some of the quadratic forms listed by Imhof (1961).
In this case we have given in Table 3 the number of integration terms, the processor time
required by this algorithm and the time required by the algorithm adapted from that of Sheil
and O’Muircheartaigh. In the table we have specified the quadratic forms by giving, for each x?
random variable, a set of 2 or 3 numbers being the values of the weight, 4, the number of degrees
of freedom and, when non-zero, the non-centrality parameter, 62. The accuracy was again set to
0-0001. The computer used was the Burroughs 6700 belonging to Victoria University of

Welli .
ellington REFERENCES

Davigs, R. B. (1973). Numerical inversion of a characteristic function. Biometrika, 60, 415-417.

ImMHOF, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48, 419-426.

SHEIL, J. and O’MUIRCHEARTAIGH, L (1977). Algorithm AS 106. The distribution of non-negative quadratic forms in
normal variables. Appl. Statist., 26, 92-98.

real procedure qf(lb, nec, n, r, sigma, c, lim, acc, trace, ifault);
comment Algorithm AS 155 Appl. Statist. (1980) Vol. 29, No. 3;
value r, sigma, ¢, lim, acc; integer r, lim, ifault;

real sigma, c, acc; real array lb, nc, trace; integer array n;

comment distribution function of a linear combination of non-central
chi-squared random variables;

begin
real pi, 1n28, sigsq, intll, intl2, ersml, ersm2, lmax, Imin, mean;
integer count; Boolean ndtsrt, fail; integer array th[1l : r];

comment label EXIT:

procedure counter:

comment count number of calls to errbd, truncation, cfe;

begin

count := count + 1:
if count > lim then

begin

comment this error exit should almost never occur and could
be replaced by an error message and stop, on compilers that
do not handle goto exits from procedures;

ifault := 4: goto EXIT
oend
end counter;

STATISTICAL ALGORITHMS

real procedure Ini(x, first); value x, first;
real x; Boolean first;

comment if first then In(l + x) else 1In(l + x) - x;

if abs(x) > 0.1 then
Inl := if first then In(1.0 + x) else In(1,0 + x) - x
else

begin real s, si, term, y, k;

y :=x / (2.0 + x); term := 2,0 X y A 3;
k := 3,0; 8 := (if first then 2.0 else -x) X y;
y =y A2
for sl := 8 + term / k while 81 + 8 do
begin
k = k + 2,0; term := term X y;
8 = 8l
ond;
Inl := 8
end 1Inl:

procedure order;
commont find order of absolute values of 1b;
begin integer j, k; real 1j;
comment label 11
for j i= 1 step 1 until r do
bogin

1j := abs(1b{j]);
for k := j - 1 step -1 until 1 do

if 1j > abs(1b[thTk11) then thlk + 1] := th{k] else goto Li;

k := 0;
Ll:thlk + 1] := j

end;
ndtsrt := false
end order;

real procedure errbd(u, cx); value u; real u, cx;

commont find bound on tail probability using mgf. Cutoff point
returned to cx;

begin real sumi, 1j, ncj, x, y, const; integer j, nj;

counter; const := u X sigsq;

suml := u X comnst; u := 2,0 X u;

for j :=r step -1 until 1 do
begin

nj = nijl; 13 := Wljl;

ncj = neljl; x := u X 1j;

y i= 1.0 - x; const := const + 1j X (ncj / y + nj) / y;
suml :=

suml + nej X (x / YY) A2+ nj X (x A2/ y+ Ini(-x, false))

end J;
errbd := exp(-0,5 X suml); cx := const
end errbd;

real procedure ctff(accx, upn); value acex: real accx, upn;

comment find ctff so that P(qf > ctff) < acex if upn > O,
P(qf < ctff) < accx otherwise;

begin real ul, u2, u, rb, const, cl, c2;
u2 := upn; ul := 0,0;

cl := mean; rb := 2,0 X (if u2 > 0.0 then lmax else Imin);
for u :=u2 / (1.0 + u2 X rb) while errbd(u, c2) > acex do
begin
ul = u2; cl = c2;

329

330 APPLIED STATISTICS

for u := (el - mean) / (¢2 - mean) while u < 0,9 do
begin
u = (ul + u2) / 2.0;
if errbd(u / (1.0 + u X rb), const) > acex then
begin
ul = u; el := const
end
else
begin
u2 := u; c2 := const
end
end;

ctff := c2; upn = u2

3

end ctff;
real procedure truncation(u, tausq); value u, tausq; real u, tausq;

comment bound integration error due to truncation at u:

begin
real suml, sumZ, prodl, prod2, prod3, 1j, ncj, x, y, errl, orr2;
integor j, nj, s;

counter; suml := prod2 := prod3

: .0;
8 = 0; sum2 := (sigsq + tausq) X u A 23
prodl := 2,0 X sum2; u := 2,0 X u;
nj :=nlj); x = (u X 13) A 2;
suml := suml + ncj X x / (1.0 + x);
if x > 1,0 then
begin
prod2 := prod2 + nj X 1n(x);
prod3 := prod3 + nj X Ini(x, true); s :=8 + nj
end
else prodl := prodi + nj X 1nl(x, true)
end j:

suml i= 0,3 X suml; prod2 := prodl + prod2;

prod3 := prodl + prod3; x := exp(-suml - 0,25 X prod2) / pi;
y := exp(-suml - 0.25 X prod3) / pi;

errl := if 8 = O then 1.0 else x X 2.0 / s;

err2 := if prod3 > 1.0 then 2.5 X y else 1,0;

if err2 < errl then errl := err2;

x = 0.5 X sum2; err2 := if x < y then 1.0 else y / x;
truncation := if errl < err2 then errl else err2

end truncation;

procedure findu(utx, accx): value accx; real utx, accx;

comment find u such that truncation(u) < accx
and truncation{u / 1.2) > acex;

begin real u, ut;
ut = utx; u i= ut / 4.0;
if truncation(u, 0) > accx then
begin
for u := ut while truncation(u, O) > accx do
ut := ut X 4.0
end
else
begin
ut := u;
for u := u / 4.0 while truncation(u, O) < acex do ut :
end;
for u i=ut /2,0, ut /1.4, ut /1.2, ut / 1.1 do
if truncation(u, O0) < accx then ut := u;
utx = ut
end findu;

L]
c

procedure integrate(nterm, interv, tausq, main);
value nterm, interv, tausq, main; integer nterm;
real interv, tausq; Boolean main;

STATISTICAL ALGORITHMS

comment carry out integration with nterm terms, at stepsize interv, If
not main then multiply integrand by 1.0 - exp(-0.5 X tausq X u A 2);

begin real inpi, u, suml, sum2, sum3, x, y, z; integer k, j, nj;
inpi := interv / pi;
for k := nterm step -1 until O do
begin
u i= (k + 0,5) X interv; suml := -2.0 X u X c;
sunZ := abs(suml): sum3 := -0,5 X sigsq X u A 2;
for j := r step -1 until 1 do

begin

nj :=nljl; x 1= 2,0 X 1b[j] X u;
x A 2; sum3 := sum3 ~ 0.25 X nj X 1nl(y, true);
neljl X x / (1.0 + y); = := nj X arctan(x) + y;
= suml + 2; sum2 := sum2 + abs(z);
=sum3d ~ 0,5 X x X y

x := inpi X exp(sum3) / u;
if v main then x := x X (1.0 - exp(-0.5 X tausq X u A 2));
sunl := gin(0.5 X suml) X x; sum2 := 0,5 X sum2 X x;
if abs(suml) < acc then
begin
intll := intll + suml; eorsml := ersml + sum2
end
else
begin
intl2 := intl12 + suml; ersm2 := ersm2 + sum2
end
end k
end integrate;

real procedure cfe(x); value x; real x;
comment coef of tausq in error when convergence factor of
exp(-0,5 X tausq X u A 2) is used when df is evaluated at x;

begin real axl, axll, ax12, sxl, suml, 1j; integer j, k, t;
comment label L;

counter;
if ndtsrt then order;
axl := sbs(x); sxl := sign(x);
suml := 0.0:
for j i=r step -1 until 1 do
begin
t := th(jl;
if 1b[t] X sx1 > 0,0 then

=T
Q
el
=

:= abs(1b[t]); ax11l := axl - 15 X (nlt] + nelt]);
=13 / 1n28;

ax1ll > ax12 then axl := axll else

if axl > ax12 then axl := ax12;
suml := (axl - ax11) / 1j;

for k := j - 1 gtep -1 until 1 do
suml := suml + (n{th{k]1 + nelthlk1]);
goto L
end
end
ond j;
L:if suml > 100,0 then
begin
cfe := 1,0; fail := true

end
else cfe := 2.0 A (suml / 4.0) / (pi X axl A 2)
end cfe;

comment 1n28 = 1n(2,0) / 8,0;

332 APPLIED STATISTICS

1n28 := 0.0800; pi := 3.14150265358070);
begin integer j, nj, nt, ntm;
real accl, almx, utx, tausq, sd, intv, intvi, x, up, un, d1, d2,
1j, nej:

comment label L1, L2

for j :=1 step 1 until 7 do tracelj] := 0.0;

ifault := count := O; intll := intl2 := ersml := ersm2 := 0,0
qf := ~1,0; accl := ace;

ndtsrt := true: fail := false;

comment find mean, sd, max and min of 1b, chock that parameter
values are valid;

8d := gigsq :!= sigma A 2; Imax := Imin := mean := 0.0
for j :=1 step 1 until r do

begin

nj :=nljl; 1j := 1b[j);

nej := neljl;

if nj < 0 V nej < 0,0 then

we

begin

ifault := 3; goto EXIT

end;
8d :=8d + 1 A2 X (2 X nj + 4.0 X ncj);
mean := mean + 1j X (nj + ncj);

if lmax < 1j then lmax := 1j else
if Imin > 1j then 1lmin := 1j
end j:
if sd = 0.0 then
begin
qf := if ¢ > 0,0 then 1,0 else 0,0; goto EXIT
end:
if 1min = 0.0 A 1max = 0,0 A sigma = 0,0 then

g

sd := sqrt(sd); almx := if Imax < -lmin then -lmin else lmax;
comment starting values for findu, ctff;

utx := 10,0 / sd; up := 4.5 / sd;
un = -up;

comment truncation point with no convergence factor;
findu(utx, 0.5 X accl);
comment does convergence factor help?;

if ¢ # 0.0 A almx > 0,07 X sd then

-_begin
tausq := 0.25 X acel / cfe(c);
if fail then fail := false else
if truncation(utx, tausq) < 0,2 X accl then
begin
sigsq := sigsq + tausq; findu(utx, 0.25 X accl);
trace[0] := sqrt(tausq)
end
end;
tracel5] := utx; acel := 0,5 X accl;

comment find 'range’' of distribution, quit if outside this;

L1:d1 := ctff(accl, up) = c;
if d1 < 0.0 then

begin
qf := 1,0; goto EXIT
end;

d2 := - ctff{accl, un);
if d2 < 0,0 then
begin
qf := 0.0; goto EXIT
ond:

STATISTICAL ALGORITHMS 333
conpment find integration interval:
intv := 2,0 X pi / (42 d1 > d2 then di olse d2);

conment calculate number of terms required for main and
auxiliary integrations;

nt = utx / intv; ntm := 3.0 / sqrt(accl);
if nt > ntm X 1.5 then

begin
comment parameters for auxiliary integration;

intvl := utx / ntm; x = 2,0 X pi / intvl;
if x < abs(c) then goto 12;

comment caleculate convergence factor:

tausq := 0.33 X acel / (1.1 X (efe(c - x) + efalc + x)));
if fail then goto I2:
acel := 0,07 X acetl;
if ntm > 1im then
begin
ifault := 1; goto EXIT
end;

comment auxilisry integration;

integrate{ntm, intvl, tausq, false): lim := lim - ntm;
sigsq := sigsq + tausq; trace[3] := tracel37 + 1;

trace[2] := tracef2) + ntm + 1.

comment find truncation point with new convergence factor;
findu{utx, 0.25 X acel); acel := 0,75 X acel;

goto L1

end;

comment main integration;

L2 :tracel4] := intv;
if nt > 1lim then

begin
ifavlt := 2; goto EXIT
end;

integrate(nt, intv, O, true);
tracel31 := tracef3] + 1; trace{2] := tracel2] + nt + 1;
qf := 0,5 = intil - intl2; trace[l] := ersml := ersm! + ersm2:

comment test whether round-off error could be significant. Allow
for radix 8 or 10 machines;

x = ersml + ace / 10,0;
for j =1, 2, 4a8d_°
if j X x =3 X ersmi then ifault := 2
end:
EXIT:
tracef7] := count
end qf

N

