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1 Introduction

The exclusive or (XOR) operation is commonly used to reduce the bias from
the bits generated by a hardware random number generator. Typically, the
uncorrected bits generated by a hardware random number generator will
have expectation (long run average value) different from the ideal value of 12 .
Also, adjacent bits may be correlated. In this note, I find the expectations
and correlations of various combinations of random bits using the XOR
operator under a variety of assumptions about the means and correlations
of the original variables. Specifically, I am interested in the effectiveness of
the XOR operator for reducing bias (the deviation of the expectation from
1
2), and what happens when the successive bits are correlated.
The symbols X,Y,Z etc. will denote random bits (taking the values 0 or

1 — in probability theory they would be known as the outcomes of Bernoulli
trials).

The results are in section 3 and the derivations of these results are in
section 4.

2 Notation and basics

2.1 Exclusive OR

I use the symbol ⊗ to denote the exclusive-or operation. So X ⊗ Y = 1 if
just one of X and Y is equal to 1; otherwise X ⊗ Y = 0.

Y = 0 Y = 1

X = 0 X ⊗ Y = 0 X ⊗ Y = 1
X = 1 X ⊗ Y = 1 X ⊗ Y = 0

The XOR operation is commutative

X ⊗ Y = Y ⊗X
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and associative
X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z.

2.2 Expectation, variance and covariance

E(X) denotes the expected value or mean value of X, that is, the average
value of a large number of repeated trials. In the case of random bits E(X) =
Pr(X = 1) where Pr denotes probability.

var(X) = E[{X − E(X)}2] denotes the variance of X. Variance is a
measure of the variability of a random variable. In the case of random bits
var(X) = E(X){1 − E(X)}. This reaches a maximum value of 14 when
E(X) = 1

2 .
cov(X,Y ) = E[{X − E(X)}{Y − E(Y )}] denotes the covariance of X

and Y and

corr(X,Y ) =
cov(X,Y )p
var(X) var(Y )

(1)

denotes the correlation of X and Y . Correlations are always between —1 and
1. When two variables are identical their correlation is equal to 1. When
the two variables are statistically independent the correlation is zero. In the
case of random bits cov(X,Y ) = Pr(X = 1, Y = 1)−Pr(X = 1)Pr(Y = 1).

When the expected value, E(X), of a bit, X, is close to 1
2 , the variance,

var(X), is very close to 1
4 and so corr(X,Y ) is close to 4× cov(X,Y ). This

sometimes provides convenient approximate simplification.

2.3 Correlation and independence

A sequence of random variables X1,X2, . . . are statistically independent if
the following is satisfied for each of variables Xi: the variables apart from
Xi do not provide any useful information for predicting the value of Xi.

In the case of pairs of random bits correlation = zero and independence
are equivalent. However when more than two random bits are involved,
independence implies zero correlation but not vice versa. Here is a simple
example. Consider X, Y and X ⊗ Y where X and Y are random bits with
expected value 12 . Each pair of X, Y and X ⊗Y are uncorrelated with each
other, but X, Y and X⊗Y are not independent since given any two of these
variables one can calculate the third.

3 Main results

3.1 Independent biased pairs

If X and Y are independent random bits with E(X) = µ and E(Y ) = ν
then

E(X ⊗ Y ) = µ+ ν − 2µν = 1
2 − 2(µ− 1

2)(ν − 1
2). (2)
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Thus if µ and ν are close to 12 then E(X⊗Y ) is very close to 12 . For example,
if µ = ν = 0.6 then E(X ⊗ Y ) = 0.48.

In all cases |E(X ⊗ Y ) − 1
2 | ≤ min(|µ − 1

2 |, |ν − 1
2 |) and so the XOR

operation always reduces bias (except when one of the variables is fixed)
when the component bits are independent.

Presenting the same result when µ = ν: if X and Y are independent and
E(X) = E(Y ) = µ then

E(X ⊗ Y ) = 2µ(1− µ) = 1
2 − 2(µ− 1

2)
2. (3)

3.2 Independent sequences

Suppose we have n independent random bits each with expected value µ.
Then the expected value of the result of XORing all of these variables is

1
2 + (−2)n−1(µ− 1

2)
n. (4)

The following table shows the bias (expected value — 0.5) for various values
of the mean, µ, and number bits, n.

µ n = 2 n = 3 n = 4 n = 5 n = 6
0.51 −0.0002 0.000004 −0.00000008 0.0000000016 −0.00000000003
0.52 −0.0008 0.000032 −0.00000128 0.0000000512 −0.00000000205
0.53 −0.0018 0.000108 −0.00000648 0.0000003888 −0.00000002333
0.54 −0.0032 0.000256 −0.00002048 0.0000016384 −0.00000013107
0.55 −0.0050 0.000500 −0.00005000 0.0000050000 −0.00000050000
0.56 −0.0072 0.000864 −0.00010368 0.0000124416 −0.00000149299
0.57 −0.0098 0.001372 −0.00019208 0.0000268912 −0.00000376477
0.58 −0.0128 0.002048 −0.00032768 0.0000524288 −0.00000838861
0.59 −0.0162 0.002916 −0.00052488 0.0000944784 −0.00001700611
0.60 −0.0200 0.004000 −0.00080000 0.0001600000 −0.00003200000

3.3 Correlated pairs

If E(X) = µ, E(Y ) = ν and X and Y have correlation ρ then

E(X ⊗ Y ) = 1
2 − 2(µ− 1

2)(ν − 1
2)− 2ρ

p
µ(1− µ)ν(1− ν) (5)

≈ 1
2 − 2(µ− 1

2)(ν − 1
2)− 1

2ρ

(assuming µ, ν are near 1
2). Thus a small amount of correlation can add

significant bias to the result.

3.4 Independent correlated pairs

Suppose E(X1) = E(X2) = E(Y1) = E(Y2) = µ, the pair (X1,X2) is
independent of the pair (Y1, Y2) and cov(X1,X2) = cov(Y1, Y2) = c.

For example, X1 and X2 might be successive observations from a ran-
dom number generator and so are slightly correlated with each other. Y1
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and Y2 are from a second identical generator that operates completely inde-
pendently of the first one.

Then
cov(X1 ⊗ Y1,X2 ⊗ Y2) = 4{c2 + 2c(µ− 1

2)
2}. (6)

In terms of correlation (assuming µ near 12)

corr(X1 ⊗ Y1,X2 ⊗ Y2) ≈ ρ2 + 8ρ(µ− 1
2)
2 (7)

where ρ is the correlation. Thus, if ρ is small and µ is close to 1
2 then

corr(X1 ⊗ Y1,X2 ⊗ Y2) is very small. If µ is not close to 1
2 then some of the

correlation will persist.

3.5 Words

Suppose we have a sequence of bits

W1,W2, . . . ,Wn,X1,X2, . . . ,Xn, Y1, Y2, . . . , Yn, Z1, Z2, . . . , Zn

from a random number generator. We are going to amalgamate then into
wordsW, X, Y, Z, each with n > 2 bits, and then bit-wise XOR wordsW
and X and bit-wise XOR words Y and Z. Here, I am lettingW etc. denote
the sequences W1,W2, . . . ,Wn, etc.

W1 W2 . . . Wn Y1 Y2 . . . Yn
X1 X2 . . . Xn Z1 Z2 . . . Zn

⇓
W1 ⊗X1 W2 ⊗X2 . . . Wn ⊗Xn Y1 ⊗ Z1 Y2 ⊗ Z2 . . . Yn ⊗ Zn

Suppose the correlation structure is such that only adjacent bits are sig-
nificantly correlated. Then formulae (6) and (7) give us the expected values
and correlation structure of the combined word except for the correlation
betweenW1⊗X1 and Wn⊗Xn; Y1⊗Z1 and Yn⊗Zn; Wn⊗Xn and Y1⊗Z1.

Consider W1 ⊗X1 and Wn ⊗Xn (or equivalently Y1 ⊗Z1 and Yn⊗Zn).
Suppose E(W1) = E(Wn) = E(X1) = E(Xn) = µ andW1, (Wn,X1),Xn are
independent but Wn and X1 have covariance c and correlation ρ. Then

cov(W1 ⊗X1,Wn ⊗Xn) = 4c(µ− 1
2)
2. (8)

In terms of correlation (assuming µ near 12)

corr(W1 ⊗X1,Wn ⊗Xn) ≈ 4ρ(µ− 1
2)
2. (9)

This will be small under the same kind of conditions that make (7) small.
Now consider Wn ⊗ Xn and Y1 ⊗ Z1. The correlation structure is the

same as above so that

corr(Wn ⊗Xn, Y1 ⊗ Z1) ≈ 4ρ(µ− 1
2)
2. (10)
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So arranging the bits into bytes, for example, and XORing the bytes
gives a better performance than XORing adjacent bits as in section 3.3. I
have not proved that there is no hidden dependence of the type found in
section 3.6.2. While I think it is unlikely that there is hidden dependence,
this does need to be proved.

3.6 Flawed correctors

Suppose we have a sequence of independent random bits X1, . . . ,Xn with
expected value µ 6= 1

2 . Following section 3.1 we can reduce the bias by
forming the sequence X1 ⊗X2, X3 ⊗X4, X5 ⊗X6, . . .. Of course, we have
only half as many corrected bits as raw bits. This section considers two
flawed methods of attempting to produce about as many corrected bits as
raw bits.

3.6.1 Accumulated randomness

Let Y1, . . . , Yn be defined by Y1 = X1 and

Yi = Xi ⊗ Yi−1 for i > 1.

We are attempting to produce a corrected sequence of random bits by taking
the exclusive-or of all the bits so far observed. Yn−1 and Yn, are the last two
bits in our corrected series. They will have expected values very close to 1

2
if n is large. However, they will have correlation

corr(Yn−1, Yn) = −2(µ− 1
2) (11)

so these corrected numbers have just replaced bias by correlation unless we
use only every second Yi.

3.6.2 Pair-wise exclusive-or

Let Y2, . . . , Yn be defined by

Yi = Xi−1 ⊗Xi.

Then
E(Yi) =

1
2 − 2(µ− 1

2)
2 (12)

and

corr(Yi, Yi+1) =
2(µ− 1

2)
2

1− 2µ+ 2µ2 ≈ 4(µ−
1
2)
2 (13)

(assuming near µ near 12). If |i− j| > 1 then corr(Yi, Yj) = 0.
Apparently this method of correction has taken n raw bits and provided

n− 1 corrected bits with a substantial improvement in the bias with just a

5



minor increase in pair-wise correlation (assuming the bias of the raw bits is
not too large). This is illusory. The correlation is not picking up the full
extent of the dependence. In section 4.2.7 I define a random bit, S, which
can be calculated from Y2, . . . , Yn−1 such that, for large n

corr(Yn, S) ≈ 2|µ− 1
2 | (14)

so that the deviation from unbiasedness and independence is really similar
to that in the original series, which, of course, is what one would expect. Of
course, there is no problem if we take only every second Yi.

On the other hand, suppose we used the seriesX1⊗X2, X2⊗X3, X4⊗X5,
X5⊗X6, X7⊗X8, . . .. That is, we are omitting every third Yi. Then the bias
and correlations are of order (µ− 12)2 and there can be no hidden dependence.
So this might be a reasonable way of increasing the yield of corrected bits.

3.7 Correlated triple

Suppose E(X) = E(Y ) = E(Z) = µ, corr(X,Y ) = corr(Y,Z) = ρ and the
process X,Y,Z is Markov so that, for example, the conditional expectation
E(Z|X,Y ) = E(Z|Y ). Then

E(X ⊗ Y ⊗ Z) = 1
2 + 4(µ− 1

2)
3 + 4ρ(µ− 1

2)µ(1− µ)(2− ρ) (15)

≈ 1
2 + 4(µ− 1

2)
3 + 2ρ(µ− 1

2)

if µ is near 12 and ρ is near 0.
This formula is important if we are going to correct by XORing three

bits and auto-correlation is present. If ρ is very small it is not going to
present a problem but if it is of a similar size to µ− 1

2 then it may have a
significant effect on the bias.

In general, there is no reason to suppose the process of random bits is
exactly Markov. However, if ρ is small, and the dependence between non-
adjacent bits very small, the Markov assumption is probably close enough.

4 Derivation of formulae

4.1 Calculation trick

Suppose X can take values 0 or 1.
Let a(X) = 1− 2X. So X = {1− a(X)}/2 and a(X) takes the values 1

and −1 corresponding to X’s 0 and 1. Then

a(X ⊗ Y ) = a(X)a(Y )

where ⊗ denotes the XOR operation. The usefulness of this is that we know
how to do manipulate multiplication in probability calculations but doing
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XOR calculations directly is awkward and unfamiliar. Also

E{a(X)} = 1− 2E(X)
var{a(X)} = 4var(X)

cov{a(X), a(Y )} = 4 cov(X,Y )

corr{a(X), a(Y )} = corr(X,Y )

so we can transform expectations and variances between X and a(X).
Also note that a(X)2 = 1.

4.2 The derivations

4.2.1 Formula (2)

Suppose X and Y are independent, E(X) = µ and E(Y ) = ν then

E(X ⊗ Y ) = 1
2 − 1

2E{a(X ⊗ Y )}
= 1

2 − 1
2E{a(X)a(Y )}

= 1
2 − 1

2E{a(X)}E{a(Y )}
= 1

2 − 1
2(1− 2µ)(1− 2ν)

= 1
2 − 2(µ− 1

2)(ν − 1
2).

4.2.2 Formula (5)

Suppose X and Y have covariance c and E(X) = µ and E(Y ) = ν.

E(X ⊗ Y ) = 1
2 − 1

2E{a(X ⊗ Y )}
= 1

2 − 1
2E{a(X)a(Y )}

= 1
2 − 1

2 [E{a(X)}E{a(Y )}+ 4c]
= 1

2 − 1
2(1− 2µ)(1− 2ν)− 2c

= 1
2 − 2(µ− 1

2)(ν − 1
2)− 2c.
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4.2.3 Formula (6)

Suppose E(X1) = E(X2) = E(Y1) = E(Y2) = µ, the pair (X1,X2) is
independent of the pair (Y1, Y2) and cov(X1,X2) = cov(Y1, Y2) = c then

cov(X1 ⊗ Y1,X2 ⊗ Y2)

= 1
4 cov{a(X1 ⊗ Y1), a(X2 ⊗ Y2)}

= 1
4 cov{a(X1)a(Y1), a(X2)a(Y2)}

= 1
4 [E{a(X1)a(Y1)a(X2)a(Y2)}−E{a(X1)a(Y1)}E{a(X2)a(Y2)}]

= 1
4 [E{a(X1)a(X2)}E{a(Y1)a(Y2)}
−E{a(X1)}E{a(Y1)}E{a(X2)}E{a(Y2)}]

= 1
4 [{4c+ (1− 2µ)2}2 − (1− 2µ)4]

= 4{c2 + 2c(µ− 1
2)
2}.

4.2.4 Formula (8)

Suppose E(W1) = E(Wn) = E(X1) = E(Xn) = µ andW1, (Wn,X1),Xn are
independent but Wn and X1 have covariance c. Then

cov(W1 ⊗X1,Wn ⊗Xn)

= 1
4 cov{a(W1 ⊗X1), a(Wn ⊗Xn)}

= 1
4 cov{a(W1)a(X1), a(Wn)a(Xn)}

= 1
4 [E{a(W1)a(X1)a(Wn)a(Xn)}−E{a(W1)a(X1)}E{a(Wn)a(Xn)}]

= 1
4 [E{a(W1)}E{a(Wn)a(X1)}E{a(Xn)}
−E{a(W1)}E{a(X1)}E{a(Wn)}E{a(Xn)}]

= 1
4(1− 2µ)2[{4c+ (1− 2µ)2}− (1− 2µ)2]

= 4c(µ− 1
2)
2.

4.2.5 Formula (11)

Suppose Xn and Yn−1 are independent, E(Xn) = µ and E(Yn−1) = 1
2 . Then

corr(Yn−1,Xn ⊗ Yn−1)
= corr{a(Yn−1), a(Xn ⊗ Yn−1)}
= cov{a(Yn−1), a(Xn ⊗ Yn−1)}
= cov{a(Yn−1), a(Xn)a(Yn−1)}
= E{a(Yn−1)a(Xn)a(Yn−1)}−E{a(Yn−1)}E{a(Xn)}E{a(Yn−1)}
= E{a(Xn)}
= 1− 2µ.
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4.2.6 Formula (13)

Suppose X1,X2,X3 are independent with expected value µ. Then

cov(X1 ⊗X2,X2 ⊗X3)

= 1
4 cov{a(X1)a(X2), a(X2)a(X3)}

= 1
4 [E{a(X1)a(X2)a(X2)a(X3)}−E{a(X1)a(X2)}E{a(X2)a(X3)}]

= 1
4{(1− 2µ)2 − (1− 2µ)4}

= 4(µ− 1
2)
2µ(1− µ).

Divide by the variance of X1 ⊗X2 to get formula (13).

4.2.7 Formula (14)

Suppose X1, . . . ,Xn are a sequence of independent random bits with ex-
pected value µ. Let Y2, . . . , Yn be defined by

Yi = Xi−1 ⊗Xi.

Let

Zn−1 = Yn−1 = Xn−1 ⊗Xn−2, (16)

Zn−2 = Zn−1 ⊗ Yn−2 = Xn−1 ⊗Xn−3,
Zn−3 = Zn−2 ⊗ Yn−3 = Xn−1 ⊗Xn−4,

. . . ,

Z2 = Z3 ⊗ Y2 = Xn−1 ⊗X1

and define

S = 1 if
1

n− 2
n−1X
i=2

Zi >
1
2 and S = 0 otherwise.

S can be calculated from Y2, . . . , Yn. From formula (16)

1

n− 2
n−1X
i=2

Zi =
1

n− 2
n−2X
i=1

Xi if Xn−1 = 0

and
1

n− 2
n−1X
i=2

Zi = 1− 1

n− 2
n−2X
i=1

Xi if Xn−1 = 1.

If n is large

1

n− 2
n−2X
i=1

Xi >
1
2 with a high probability if µ > 1

2
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and
1

n− 2
n−2X
i=1

Xi <
1
2 with a high probability if µ < 1

2 .

Putting all this together, if n is large, we have (with a high probability)

S = 1 if Xn−1 = 0 and µ > 1
2 or if Xn−1 = 1 and µ < 1

2

and
S = 0 if Xn−1 = 1 and µ > 1

2 or if Xn−1 = 0 and µ < 1
2 .

Hence (assuming µ is close to but not exactly 1
2)

corr(Yn, S) ≈ − corr(Xn ⊗Xn−1,Xn−1)× sign(µ− 1
2)

≈ 2|µ− 1
2 |

since

corr(Xn ⊗Xn−1,Xn−1)
≈ cov{a(Xn)a(Xn−1), a(Xn−1)}
= E{a(Xn)a(Xn−1)a(Xn−1)}−E{a(Xn)a(Xn−1)}E{a(Xn−1)}
= (1− 2µ)− (1− 2µ)3 ≈ −2(µ− 1

2).

4.2.8 Formula (15)

Suppose E(X) = E(Y ) = E(Z) = µ, corr(X,Y ) = corr(Y,Z) = ρ and the
process is Markov so that the conditional expectation E(Z|X,Y ) = E(Z|Y ).
Now

E(Z|Y = 1) = Pr(Z = 1, Y = 1)/Pr(Y = 1)

= E(Y Z)/µ

= {ρµ(1− µ) + µ2}/µ
= ρ− ρµ+ µ

and

E(Z|Y = 0) = Pr(Z = 1, Y = 0)/Pr(Y = 0)
= {Pr(Z = 1)− Pr(Z = 1, Y = 1)}/Pr(Y = 0)
= {µ−E(Y Z)}/(1− µ)

= {µ− ρµ(1− µ)− µ2}/(1− µ) = −ρµ+ µ

so that E(Z|Y ) = ρY − ρµ+ µ. Hence

E{a(Z)|Y } = 1− 2(ρY − ρµ+ µ) = ρa(Y ) + (1− 2µ)(1− ρ). (17)
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Then

E(X ⊗ Y ⊗ Z)

= 1
2 − 1

2E{a(X ⊗ Y ⊗ Z)}
= 1

2 − 1
2E{a(X)a(Y )a(Z)}

= 1
2 − 1

2E[a(X)a(Y )E{a(Z)|X,Y }]
= 1

2 − 1
2E[a(X)a(Y )E{a(Z)|Y }]

= 1
2 − 1

2E[a(X)a(Y ){ρa(Y ) + (1− 2µ)(1− ρ)}]
= 1

2 − 1
2E{ρa(X) + a(X)a(Y )(1− 2µ)(1− ρ)}

= 1
2 − 1

2(1− 2µ)[ρ+ {(1− 2µ)2 + 4ρµ(1− µ)}(1− ρ)]

= 1
2 − 1

2(1− ρ)(1− 2µ)3 − 1
2ρ(1− 2µ){1 + 4µ(1− µ)(1− ρ)}

= 1
2 + 4(1− ρ)(µ− 1

2)
3 + ρ(µ− 1

2){1 + 4µ(1− µ)(1− ρ)}
= 1

2 + 4(µ− 1
2)
3 + ρ(µ− 1

2){1 + 4µ(1− µ)(1− ρ)− 4µ2 + 4µ− 1}
= 1

2 + 4(µ− 1
2)
3 + 4ρ(µ− 1

2)µ(1− µ)(2− ρ).
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